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Abstract 

     When Roger Needham and Michael Schroeder first introduced a seemingly secure 

protocol [24], it took over 18 years to discover that even with the most secure encryption, 

the conversations using this protocol were still subject to penetration. To date, there is 

still no one protocol that is accepted for universal use.  Because of this, analysis of the 

protocol outside the encryption is becoming more important.  Recent work by Joshua 

Guttman and others [9] have identified several properties that good protocols often 

exhibit.  Termed “Authentication Tests”, these properties have been very useful in 

examining protocols.  The purpose of this research is to automate these tests and thus 

help expedite the analysis of both existing and future protocols.  

     The success of this research is shown through rapid analysis of numerous protocols for 

the existence of authentication tests.  The result of this is that an analyst is now able to 

ascertain in near real-time whether or not a proposed protocol is of a sound design or 

whether an existing protocol may contain previously unknown weaknesses.  The other 

achievement of this research is the generality of the input process involved.  Although 

there exist other protocol analyzers, their use is limited primarily due to their complexity 

of use.  With the tool generated here, an analyst needs only to enter their protocol into a 

standard text file; and almost immediately, the analyzer determines the existence of the 

authentication tests.      
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AUTOMATING SECURITY PROTOCOL ANALYSIS 
 
 

I.  Introduction 

1.1 Background 

     When Roger Needham and Michael Schroeder first introduced a seemingly secure 

protocol [24], it took over 18 years to discover that even with the most secure encryption, 

the conversations using this protocol were still subject to penetration [9]. To date, there is 

still no one protocol that is accepted for universal use.  Because of this, analysis of the 

protocol outside the encryption is becoming more important.  Recent work by Joshua 

Guttman and others [5] has identified several properties that good protocols often exhibit.  

Termed “Authentication Tests”, these properties have been very useful in examining 

protocols.  The purpose of this research is to automate these tests and thus help expedite 

the analysis of both existing and future protocols.  

1.2 Problem Statement 

Numerous security protocols have been proposed [29].  They utilize both 

asymmetric and symmetric cryptography and employ characteristics such as trusted and 

non-trusted third parties.  Chapter 2 covers these concepts in great detail.  The problem is 

that analysis of these protocols is normally done either through tedious pen and paper 

proofs or by realizing weaknesses after the fact.  This research is intended to reduce the 

burdensome task of evaluating protocols from a theoretical pen-and-paper method to a 

more automated method that incorporates techniques understood to prove certain 
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correctness properties of a protocol.  Although there are other methods to evaluate 

protocols, this research focuses on the methods developed by Guttman et al [5]. 

1.3 Summary of Results 

     The Security Protocol Analyzer (SPA) successfully shows that automated tools can be 

highly valuable in the performance of protocol analysis.  In particular, the SPA is able to 

determine when and where outgoing, incoming and unsolicited tests occur within a 

protocol run.  Using string comparisons vice type comparisons requires specific values be 

given and does limit the application to analysis based on completed static runs.  However, 

putting together numerous protocols in generic text files proves much easier than 

individual protocol development as noted in other protocol analyzers [11, 27].  It also 

allows for much quicker analysis of the protocol because it does not have to dynamically 

create a search tree; instead it only examines the post-run state of the protocol as entered 

in the input text file.  The SPA takes any protocol as input in a standard text file and 

generates accurate output that shows occurrences of authentication tests.  Detecting 

authentication tests is done in very short time.   

1.4 Thesis Overview 

The remainder of this thesis consists of four chapters. 

• Chapter 2 – This chapter is intended to give the reader an understanding of the 

theoretical aspects of what this thesis intends to accomplish.  This chapter focuses 

primarily on background literature and other work done in the field of protocol 
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analysis.  It introduces concepts such as authentication tests, test components and 

different types of encryption methods. 

• Chapter 3 – This chapter lays out how the protocol analysis is accomplished.  It 

describes the inner workings of an automated analysis tool developed specifically 

for this research and gives the reader an understanding of how the results of the 

protocol analysis tool are to be interpreted. 

• Chapter 4 – In this chapter, numerous protocols are executed using the analysis 

tool.  The output is described and the importance of certain functionality, in 

relation to the tool, is laid out for the reader. 

• Chapter 5 –This is the summary chapter.  Here, the determination about the 

effectiveness of the tool is given.  It also lays out the groundwork as to where 

future work in the field of protocol analysis should go. 
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II. Literature Review 

2.1 Chapter Overview 

     This chapter’s purpose is to give the reader a basic understanding of strand spaces and 

authentication tests.  First, an introduction into the basic forms of encryption, symmetric 

and asymmetric, is given.  This is necessary to ensure the reader understands basic 

cryptographic principles that are discussed throughout this chapter.  Next, a brief 

introduction of what strand spaces are and how they are a means of representing 

protocols within the context of graph theory is given.  Particularly, this chapter shows 

how strand spaces are used to model current protocols, such as Needham-Schroeder-

Lowe [9] and Kerberos [13].  It also introduces the various authentication tests, which are 

derived from the theory of strand spaces.  Authentication tests are a means of ensuring a 

protocol is designed well enough to withstand common capabilities of penetrators, such 

as those represented in the Dolev-Yao threat model [26]. 

     Next, this chapter gives a brief introduction into automated modeling tools that 

represent potential candidates for automating the tests.  The purpose of automating strand 

space analysis is to show whether or not potential weaknesses exist within a given 

protocol.  If successful, this approach can provide a method for alleviating the tedium and 

inaccuracy associated with pen-and-paper proofs.  Finally, related work in the field of 

strand space automation is discussed and their general results summarized. 
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2.2 Symmetric/Asymmetric Cryptography 

     A brief review of symmetric/asymmetric cryptography is warranted since there is 

frequent mention of ‘keys’ belonging to different parties throughout the remainder of this 

thesis.   

Symmetric Cryptography 

     With the advent of the Caesar cipher over 3000 years ago, symmetric cryptography 

was established as the first form of encryption.  It is the use of a single key to perform 

both encryption and decryption of messages.  The concept works as follows: 

     If Bob wants to send Alice a message, they have an agreed-upon key, which they will 

use for encryption/decryption purposes.  This key is most likely a mathematically 

generated prime number, which when applied to an algorithm will generate cipher text 

(the encrypted message).  Alice or Bob can then take the cipher text, along with the same 

key, plug it into the same algorithm and generate the original plain text (the unencrypted 

message).  Symmetric cryptography has the advantage of requiring only one key for both 

encryption and decryption, but if compromised, all messages encrypted with that one key 

are now in danger of being read by unintended parties! 

Asymmetric Cryptography 

      Asymmetric encryption utilizes two keys, a private and public key to encrypt/decrypt 

a message.  The public key is the receiver’s key that is freely made available to all 

potential senders.  The private key is the key owned by the receiver that is never shown to 

anyone else.  In this case, Alice has a private key, which only Alice knows, and Alice has 

a public key, which is available to anyone.  Similarly, users will entrust their public key 
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to Alice and keep their private key to themselves.  Because Alice has another user’s 

public key, Alice can encrypt a message with that public key.  Once the message is sent, 

only the owner of the corresponding private key can decrypt it.  Asymmetric 

cryptography has the advantage of guaranteeing that only the intended recipient of a 

message can read that message, and does not require sharing private keys with anyone.  

(This assumes one’s private key is not compromised.)  However, asymmetric keys are 

normally mathematically larger than symmetric keys so it is quite common for 

asymmetric cryptography simply to be used to encrypt symmetric keys that are 

distributed to intended recipients.  Another more recent use for asymmetric keys is digital 

signing.  By encrypting only a portion of the message (e.g. hash of the message) with my 

private key, then enclosing the total message in a symmetric key, I guarantee non-

repudiation of its origin.  This means that whoever opens the message is assured of its 

origin if the sender’s private key is not compromised because at this point, only the 

sender’s public key opens the inner encrypted portion. 

2.3 Strand Spaces and Security Protocols 

     A strand space is a graph-theoretic representation of a security protocol.  A security 

protocol is the handshaking that occurs between different parties, within the context of 

computer networks.  The intent of the handshaking is to ensure authenticity of each party 

to the others, that authorized persons only view a message’s content, and possibly to 

generate and/or distribute session keys.  Session keys are used temporarily for encryption 

during time-sensitive conversations.  Their advantage is that they expire; and if they are 

not compromised, intercepting a message from one session is not mathematically 



 

7 

equivalent to a message from another session regardless of the contents in the message.  

Their disadvantage is that they need to be generated for each new session.  So, if there is 

a weakness in the protocol, a penetrator might be able to ascertain how session keys are 

being created.  This very flaw is exploited in Needham-Schroeder [9].    

     Authentication tests stem from an understanding of strand spaces.  Therefore, the first 

topic covered is strand spaces.  Once it is shown how graphs are used to represent 

protocols, the next logical step is to show how messages are formed and represented 

along these graphs.  This is where the concept of a test component is introduced.  Then it 

is explained how outgoing, incoming and unsolicited tests are derived from test 

components and thus result in the formulation of the authentication tests. 

2.3.1 Strand Spaces – Brief Overview 

     To start, let’s assume for now that a protocol only consists of two parties 

communicating with each other.  Communication consists of a series of discrete events.    

For example, Party A sends some sort of message to Party B.  Party B receives that 

message and maybe sends another back, etc.  This process continues for whatever length 

of time that given protocol requires.  A strand is the sequence of events that occur 

involving only one of the parties  (A’s strand for this protocol: A sends a message, A 

receives a message, A sends another message etc).  A regular strand is identified as a 

legitimate party’s strand.  A strand space, shown as ∑, is the collection of all strands, or 

sequences of events, that can occur between communicating parties. It is these ‘strand 

spaces’ which form the basis of authentication tests [2].  The authentication tests are a 
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means of verifying whether a given protocol can successfully ensure proper (intended) 

and secure communication between the parties.   

     Messages that can be exchanged between communicating parties in a protocol are 

called terms.  Terms are elements of the set of messages, called A, which can be sent 

between communicating parties.  The set A is freely generated from two disjoint sets:  T, 

which represents text (nonces, names etc) and K, which represents keys.  The generation 

of A from these sets occurs through encryption, concatenation or both.  We show 

transmitted terms as being preceded by a positive (+) sign and received terms as being 

preceded by a negative (-) sign.  To further illustrate this, we’ll use t to represent a term 

being sent then received by party A from our example above.  In the above case, we 

represent A sending the term as: + t and A receiving the term as: - t.  Also, a term t is said 

to be a subterm of t’, written as t ⊂ t’, if one can arrive at t’ by “repeatedly concatenating 

[t] with arbitrary terms and encrypting with arbitrary keys.” [8] Encryption of a term is 

written as: { t }Ka .  If we want to show encryption from the use of a particular party’s 

key, we write this as: { t }Ka meaning the term is encrypted with A’s public key.  A’s 

private key is denoted Ka
-1.  To represent symmetric cryptography, encryption with a key 

shared by A and B is shown as { t }Kab. 

     Strand spaces are based on graph theory (Figure 2.1).  A graph consists of edges and 

vertices.  The vertices represent communication events, also called nodes.  If s is a strand, 

then we represent the ith node along that strand as n = <s, i>.  There are two kinds of 

edges:  successive events (nodes) within a strand (shown with the double arrow: ⇒) and 

communication between nodes on two separate strands (shown with the single arrow: 
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→).  The graph will be acyclic since events cannot go back and precede events that have 

already occurred.  The relation between nodes on the same strand is represented as n ⇒+ 

n’ where n = <s, i>, n’ = <s, j> and j > i.  The relationship between inter-communicating 

nodes, meaning nodes from separate strands, is denoted as n → n’ where term(n) = +t and 

term(n’) = -t.  Finally, a bundle is defined as a section of the strand space that is large 

enough to represent a full protocol exchange.  Figure 2.1 demonstrates an example of a 

bundle, although in this case, the bundle consists of essentially the protocol itself.  

 

A      {Na, A}Kb  B 
• ⎯⎯⎯⎯⎯⎯⎯→  • 

     ⇓      {Na, Nb}Ka        ⇓ 
• ←⎯⎯⎯⎯⎯⎯⎯  • 

     ⇓      {Nb}Kb      ⇓ 
• ⎯⎯⎯⎯⎯⎯⎯→  • 

 
Figure 2.1 - Needham-Schroeder Protocol 

     This brief introduction into the notation used in strand space analysis suffices to 

demonstrate how a protocol is represented.  Later in this chapter, this notation is used to 

show the Kerberos protocol (Figure 3) in detail.  Next, incoming and outgoing tests are 

described.  These tests are the foundation of the authentication tests.   

2.3.2 Understanding the Penetrator 

     First, to help understand why the authentication tests are important, it is now 

necessary to explain what the tests help protocol designers guard against.  The penetrator 

is understood to be the person(s) who is trying to perform any unwanted action during an 

exchange.  Dolev-Yao [26] have formalized what are understood to be widely accepted 
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capabilities of the penetrator.  This formalization is termed the Dolev-Yao threat model.  

Because the focus here is not on the mathematical soundness of encryption, it is 

understood that the penetrator is actually a legitimate party on the network simply out to 

do no good, so we term this person: Malice.  What can Malice do? 

• Malice can obtain any message passing through the network 

• Malice is a legitimate user and can initiate conversations, and is expected at one 

time, to be a recipient of an initiated conversation 

• Malice can impersonate any principal and thus send messages on their behalf to 

any other principle on the network 

Dolev-Yao also explicitly state what Malice can not do: 

• Malice cannot guess a random number (i.e. the mathematics of the encryption is 

assumed to be ideal) 

• Malice cannot decrypt properly encrypted messages without possessing the proper 

key; Malice cannot generate encrypted text on behalf of a user without his or her 

proper key 

• Malice cannot ascertain the correct corresponding private key of any other user’s 

public key 

2.3.3 Authentication Tests  

     Now that we understand what we are guarding against, we can move onto the 

authentication tests themselves.  To understand the authentication tests it is necessary to 

understand three simple tests: outgoing, incoming and unsolicited [4].  It is these three 

tests that form the foundation of the authentication tests.  
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     The key component that these tests work with is called a test component.  The formal 

definition of a test component is shown below [4]: 

 

 Definition: t = {h}k is a test component for a in n if: 

1. a ⊂ t and t is a component of n; 

2. The tem t is not a proper subterm of a component of any regular node 

n′ ∈ ∑. 

     What this states in laymen’s terms is that a principal generates some a, and it is a’s 

existence in a component that differentiates between a routine component and a test 

component.  The transmission or reception of this test component is how we ascertain 

whether an incoming, outgoing or unsolicited test occurred. 

     An “outgoing test for a in t” is when a test component t that contains a uniquely 

originating value a is sent out and a is received back in cryptographically altered form 

called t’ (Figure 2.2);  (cryptographically altered form means that the initial message is 

decrypted by someone possessing the proper key and subsequently altered) the 

conclusion is that an authorized recipient received the message, decrypted it, extracted 

the value a and transmitted it back.  This conclusion relies on the assumption that the 

decryption key, K-1, is safe, or not compromised by an attacker, and therefore only a 

regular (authorized) user could perform the decryption.  The uniquely originating value, 

in this case a, which is a very large randomly generated number, has very little chance of 

being guessed by another party.  The uniquely originating term is indicated by the * and 
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we represent the outgoing test as: {…a…}K  ~ …a… where a is the uniquely originating 

value. 

         A     *a ⊂ {h}K  = t 
• −−−−−−−−−→ 

         ⇓        a ⊂ t′ 
• ←−−−−−−−−− 

 
Figure 2.2 - Outgoing Test 

Coincidentally, the creation of this unique number is very common.  A regular use of this 

unique value is as a nonce or numbers once; because of their size and randomness, they 

are commonly used as session keys.  The unaltered portion of the message is this 

uniquely created value because it is possible that the intended recipient concatenates 

other values to the original message.  With regard to the graph representation, the part of 

a strand that receives a and sends it back altered is referred to as a transforming edge.  

The part of a strand that sends a out and receives it back altered is referred to as a 

transformed edge.  A transformed edge containing a uniquely originating term in the 

sending node is called a test.   

     The incoming test works in a similar fashion.  Given some a transmitted in either plain 

or encrypted form, if it is received back unaltered but within a test component properly 

encrypted by an uncompromised symmetric key, we conclude that a regular recipient 

performed the encryption.  We write this as: …a… ~ {…a…}Kab.  The unsolicited test is 

inherently weaker in nature.  It states that whenever a test component { t }K is received, 

assuming that symmetric key K is safe, then the term could only have originated on a 

regular strand.  Since the graphical representation of the protocol is acyclic, this 
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originating node is located somewhere before the reception node. We show this as: ~ 

{…a…}Kba.  These three tests provide the groundwork for understanding how the 

authentication tests work.  Since the purpose of this research is to generate a tool that 

automates security protocol verification, the following are the formal definitions for 

authentication tests and are drawn directly from [2]:  

Authentication Test 1:  Let C be a bundle with n′ ∈ C, and let n ⇒+ n′ be an outgoing 

test for a in t. 

     1. There exist regular nodes m, m′ ∈ C such that t is a component of m and m ⇒+ m′ is 

a transforming edge for a. 

     2. Suppose in addition that a occurs only in component t1 = {h1}K1 of m′, that t1 is 

not a proper subterm of any regular component, and that K1¯¹ ∉ P.  Then there is a 

regular node with t1 as a component. 

Authentication Test 2:  Let C be a bundle with n′ ∈ C, and let n ⇒+ n′ be an incoming 

test for a in t′. Then there exist regular nodes m, m′ ∈ C such that t′ is a component of m′ 

and m ⇒+ m′ is a transforming edge for a. 

Authentication Test 3:  Let C be a bundle with n ∈ C, and let n be an unsolicited test for 

t = {h}K. Then there exists a positive regular node m ∈ C such that t is a component of 

m.   
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2.3.4 Tests Applied to Needham-Schroeder 

     This section shows how these tests are visible in an actual Protocol.  Although the 

Needham-Schroeder is described later on in great detail, it serves as a good tool to further 

understand how the tests work.   

 

A      {Na, A}Kb = t  B 
• ⎯⎯⎯⎯⎯⎯⎯→  • 

            “Transformed Edge”→ ⇓      {Na, Nb}Ka = t’ * ⇓   ←”Transforming Edge” 
 
     *= t’ w/ respect to A,= t w/ respect to B 
 

• ←⎯⎯⎯⎯⎯⎯⎯  • 
          ”Transforming Edge”→ ⇓      {Nb}Kb  = t’      ⇓  ←”Transformed Edge” 

• ⎯⎯⎯⎯⎯⎯⎯→  • 
 

Figure 2.3 – Annotated Needham-Schroeder 

Working from Figure 2.3, in the first line, A is sending his test component out.  The 

message {A Na}Kb is valid as a test component for reasons described in Section 2.3.3.  

(The a in this example is represented by Na.)  The component is received by B, who then 

transforms the term through decryption, alteration and re-encryption (only the end result 

is shown).  With respect to the SSM, this constitutes the transforming edge.  A’s receipt 

of this new component, with respect to the SSM, is the transformed edge.  The receipt of 

this new component in this protocol represents two actions:  The first is the completion of 

A’s outgoing test and the second is B’s transmission of his own test component.  Because 

A has received his test component back altered, only through proper decryption, he can 

infers a proper principal performed the transformation thus completing his outgoing test.  

A then takes over the role as ‘transforming edge’ with respect to B’s test component: {Na 
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Nb}Ka, with the a, for B’s test component, represented as Nb.  A decrypts, alters and re-

encrypts B’s test component, then retransmits the new component back to B.  Once B 

receives his new component back, he goes through the same evaluation proofs as A and 

thus concludes a proper principal performed the transformation and concludes an 

outgoing test has occurred.  

2.4 Security Protocol Examples 

     The strand space methodology enables the modeling of security protocols as graphs.  

This section describes two security protocols represented in the context of strand spaces. 

The two protocols are: Needham-Schroeder [2] and Kerberos [13].  However, in an effort 

to illustrate the use of strand spaces with a particular protocol, more emphasis is placed 

on the Needham-Schroeder protocol as this protocol is routinely studied and analyzed in 

the context of strand spaces [2, 4 and 5]. 

2.4.1 Types of Protocols 

     Clark and Jacob identify basic categories that protocols fit into:  Symmetric or 

Asymmetric cryptography, employing either trusted third parties or simply two 

communicating principals [29].  For the purpose of this research only the main three 

protocol types are reviewed. They are:  Symmetric Key with Trusted Third Party, 

Symmetric Key without Trusted Third Party and Public Key.  Symmetric key with trusted 

third party is demonstrated in the Kerberos protocol.  In this protocol, the session keys 

are generated by a server and then distributed to the requesting parties.  There exists an 
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understanding that each party has its own secure symmetric key for use when 

communicating with the server.   

     The symmetric key without trusted third party is best demonstrated in challenge-

response protocols.  The way Needham-Schroeder is shown in Figure 2.1, it could be 

construed as a challenge response protocol had the keys been symmetric vice 

asymmetric.  The reason is, had the keys been symmetric, it would imply that the 

communicating parties each had prior knowledge of the key they intend to use with no 

server generating it for them.  However, Needham-Schroeder does use asymmetric 

cryptographic techniques with a trusted third party. 

2.4.2 Needham-Schroeder Protocol 

     The Needham-Schroeder [24] public key protocol is represented in Figure 2.1.  Later 

in Chapter 4, this protocol is shown with the server.  A description of the protocol 

represented in Figure 2.1 is as follows:  The parameters A and B represent 

communicating principals.  The parameter N represents a nonce.  The letter following K 

is indicating which node’s public key is used. In the Needham Schroeder protocol, A 

sends B a nonce encrypted with B’s public key.  Along with this, A sends B his signature; 

in this case a signature is simply some agreed upon identifier which each party can use to 

know who they are speaking to.  Node B decrypts the message and replies by sending A 

the original nonce along with a new nonce generated by B, all encrypted with A’s public 

key.  Node A decrypts the message and sends B his nonce back, encrypted with B’s public 

key.  Once these events happen, it is now understood that A and B are communicating.  

However, it is not implied that this is a secure sequence of events.  In fact, it is shown [9, 
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2 and 5] that strands termed penetrator strands are capable of infiltrating a session.  The 

penetrator strand represents an unauthorized party who has infiltrated a session. The 

effect of infiltration varies significantly based upon the importance or sensitivity of the 

session. 

2.4.3 Penetration of Needham-Schroeder Defined 

     The penetration of the Needham-Schroeder occurs as follows [Figure 2.4]:  Assume 

that A wants to talk to another party.  In this case, we’ll call that party P.  A then initiates 

a conversation with P, who then encrypts/forwards A’s information over to party B.  Party 

B, thinking A initiated a conversation with him, will then answer the challenge with a 

reply, and also issue his own challenge.  A receives this message and assumes it came 

from P and then replies to P with the correct response.  P then encrypts/forwards this new 

information over to B who sees it as the correct information.   

 

A      {Na, A}Kp   P {Na, A}Kb  B 
 • ⎯⎯⎯⎯⎯⎯⎯→  • ⎯⎯⎯⎯⎯⎯⎯→   • 

           ⇓                  {Na, Nb}Ka                 ⇓ 
 • ←⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯  • 

           ⇓      {Nb}Kp        {Nb}Kb ⇓ 
           • ⎯⎯⎯⎯⎯⎯⎯→ • ⎯⎯⎯⎯⎯⎯⎯→ • 
 

Figure 2.4 - Needham-Schroeder Penetrated 

     Now, both parties are convinced they are talking to their intended audience. However, 

P now has the nonces from each party and is able to eavesdrop on a conversation between 

A and B or simply converse with B while impersonating A.  In [9], Lowe proposes that 

B’s reply contain his identifier: ( { Na, Nb, B}Ka ).  This will allow A to see that 
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somehow his information is going to an unintended party and deduce that P is probably 

malicious. 

2.4.4 Kerberos  

     Kerberos is an authentication service for open network systems first proposed by 

Miller and Neuman [14].  It involves three principals: user, client and server.  The basic 

process works as follows.  A user desiring a service or program contacts the client.  The 

client can be anything from a program to a person.  The client then contacts the server on 

behalf of the user.  Kerberos, using private key encryption, derives a private key from the 

users’ password.  This key, along with all other users’ keys, is stored in a Kerberos-

managed database.  Any network service requiring authentication is registered with 

Kerberos.  Also important to note, Kerberos maintains a list of registered clients, which 

corresponds with a particular key.  What is evident here is that Kerberos acts as the 

middleman between registered clients.  Another role Kerberos plays is the generation of 

session keys.  Unlike the private keys, session keys are only temporary keys used within 

a limited timeframe, as stated earlier; nonces are often used for session keys.  

     It is now demonstrated how Kerberos handles a request for communication between 

two parties.  A first requests a session key from the authentication server that it can then 

use to communicate with B.  The session key is a uniquely originating key, which is 

ideally used for only one session.  First, A sends the authentication server, AS, its identity 

and the identity of whom it wants to communicate with.  AS then generates a symmetric 

session key, it encrypts the session key and B’s identity with A’s key.  It then encrypts the 

session key and A’s identity with B’s key (Figure 2.5).  It then sends both encrypted 



 

19 

messages to A.  At this point, A decrypts the session key encrypted with A’s key, 

generates a time stamp, encrypts the time stamp with the newly acquired session key and 

sends both packages off to B.  Now, A and B are able to communicate in a secure fashion.   

     With respect to the authentication tests, Kerberos uses the incoming and unsolicited 

tests.  This determination is made by the fact that A sends out plaintext and receives it 

back properly encrypted.  This is an example of the incoming test.  With respect to 

incoming tests, sending something out plain and receiving it back encrypted does not 

imply symmetric cryptography; if that protocol uses asymmetric cryptography then any 

party can encrypt a plain message with a public key and one cannot conclude an 

incoming test occurred because you cannot be sure who did the encrypting.  However in 

Kerberos, A shares a symmetric key with AS therefore we conclude the AS did the 

encrypting.  B receives an un-requested message properly encrypted by A; this is an 

example of an unsolicited test.  This protocol does not contain any outgoing tests, but it is 

not a requirement that all tests be represented in a protocol.  The presence of these tests 

also does not guarantee that Kerberos is a ‘good’ protocol.  The original Needham-

Schroeder contained outgoing tests with respect to both parties but still demonstrated a 

serious flaw due to the contents of the messages themselves.   
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          A       {A, B}Kas            AS   B 
          • ⎯⎯⎯⎯⎯⎯⎯⎯→ • 

                               {A, SK}Kbs, {FS, SK}Kas⇓ 
          • ←⎯⎯⎯⎯⎯⎯⎯⎯ • 
          ⇓       {A, SK}Kbs, {Time-stamp}SK 

• ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→  • 
 

Figure 2.5 - Kerberos Communication Initialization 

2.5 Related Work in the Automation of Security Protocol Verification 

     Automating security protocol verification allows for quicker determinations of the 

weaknesses and strengths of a particular protocol.  Numerous researchers [11] have 

proposed applying formal proof techniques towards the analysis of security protocols.  

The next sections briefly cover key work that has been successful in the automation of 

security protocol verification.   

     The techniques employed in protocol analysis, covered in this review, typically fall 

into two categories.  They are model checking and theorem proving.  In the model 

checking approach, one searches for desired states by modeling the protocol and 

executing it in every possible way.  In the theorem proving approach, one creates a search 

tree and checks for the existence of the theories in that tree at some state.  The Multi-Set 

Rewriting and Failure Divergence Refinement [22] checking typically fall into the model 

checking camp.  The Athena approach [11] falls into the theorem proving camp.  The 

approach in this research falls into the theorem approach because it automatically 

identifies where the authentication test theorems can be applied. 
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2.5.1 Failure Divergences Refinement Checker 

     Lowe [9] successfully analyses the Needham-Schroeder protocol using the Failure 

Divergences Refinement Checker (FDR), which is a model checker for Communicating 

Sequential Processes (CSP) [25].  CSP is a language that allows easy representation of 

pattern interaction.  Using CSP, Lowe tests whether a protocol achieves authentication.  

In the case of an attacker being discovered [9], Lowe is also able to show that the fixed 

protocol is secure. 

2.5.2 Process Calculus 

     In [1], Blanchet uses an extension of pi-calculus to represent protocols.  Pi-calculus is 

“a ‘process algebra’ in which channel names can act both as transmission medium and as 

transmitted data” [23].  His results show promise in that automated protocol verification 

can be done in less than one second.  The user needs only to correctly code whatever 

protocol they intend to evaluate.  The tool, OCaml 3.04 [1], translates the protocol into 

Horn clauses and then executes it against rules based on whatever that particular protocol 

defines as a rule.  This is obviously much faster than traditional methods of hand proving.  

Blanchet also permits an unbounded number of sessions within the test, whereas previous 

work has limited the number of session due to infinite state systems.  On rare occasions 

the algorithm will not terminate and it can even fail on correct protocols.  However, it is 

Blanchet’s conjecture that it will terminate for a large class of protocols. 



 

22 

2.5.3 Athena  

     Athena is an automated checking algorithm that analyzes security protocols [12].  

Athena implements a specialized logic for expressing security properties such as 

authentication, secrecy and properties related to electronic commerce [12].  Athena works 

by terminating and providing a proof on well-formed formulas or generating a counter 

example on well-formed formulas that evaluate to false.  Although there are other formal 

techniques for analyzing security protocols [11], Athena differs in the sense that it can 

directly evaluate the strand space model without succumbing to the state space explosion 

[11, 2.5.1].  State space explosion occurs whenever there is an unbounded number of 

initiators/responders and sessions thus creating an unreachable theorem [18].  Athena 

uses ‘unreachability theorems’ to ‘prune’ the state space, thus reducing the number of 

states and increasing the probability of terminating [12].  Another method Song uses to 

reduce the state space is that of the Strand Space Model (SSM) [28].  By using the causal 

relationships developed by Guttman in the SSM, Song is able to further prune the state 

space.  Song shows that although limited due to its inability to allow certain terms to be 

encrypted, Guttman and Thayer’s tests are still effective in reducing the state space. 

2.5.4 Security Modeling in Maude 

     Object modeling software is another effective way to model protocol transactions.  

One example of automated modeling software is Maude [19].  Maude was the intended 

language for this research, but Java proved very effective.  However, for future research 

it is highly recommended that using Maude to automate authentication tests be 

performed, as this is now explained.  Developed primarily at the University of Illinois 
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and Stanford Research Institute, Maude’s purpose is stated as follows: “…supporting 

formal executable specification, declarative programming, and a wide range of formal 

methods as means to achieve high-quality systems in areas much as: software 

engineering, networks, distributed computing, bioinformatics, and formal tool 

development.” [19].  

     Specifically, Maude is a “high-performance reflective language, which supports both 

equational and rewriting logic specifications” [19].  Being a reflective language means 

that Maude can program or manipulate itself [20].  Rewriting logic allows for concurrent 

state computations.  Although a protocol is pre-defined at run time, concurrent state 

computations allows for rules or equational rewrites to occur simultaneously.        

     In [27], Denker and Meseguer show how protocols can be effectively modeled using 

object-oriented specification in Maude.  The purpose of his work is to show that Maude’s 

ability to perform rewritable logic and concurrent execution is helpful in uncovering 

security flaws in protocols.  The paper uses the Needham-Schroeder public key protocol 

as the case study.  Meseguer implements a bounded depth first search on multiple 

instances of protocol runs.  The depth first search shows efficient searching of possible 

attacks on the multiple run is an effective means of ascertaining a weakness on a given 

protocol.  In this case, the weakness discovered by Lowe [9] is found using a depth first 

search.  In this example we see Maude being used as a model checker.  However, Maude 

can also be used for theorem checking.  Because Maude is powerful enough to handle 

either method of use, it allows for multiple means in which modeling the authentication 

tests can be done. 
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2.5.5 Multi-Set Rewriting 

     In [22], Cervesato et al. use multi-set rewriting to provide a means to specify ‘finite 

length’ protocols.  In his work, Cervesato uses the multi-set rewriting to extend the strand 

space formalism.  Through this he is able to model penetrator capabilities, as defined by 

Dolev-Yao, and then relate the intruder theory to penetrator strands as defined within the 

context of strand space modeling.  This particular work serves as a means to further 

understand the Dolev-Yao threat model.   

2.6 Summary 

     This chapter outlines what a strand space is and how it is represented using graph 

theory notation.  It then shows how this notation is used to represent a security protocol.  

The Needham-Schroeder and Kerberos protocols were used to illustrate the use of strand 

spaces.  Next, three authentication tests were defined from [5].  There are three tests—

outgoing, incoming and unsolicited—and each has a theorem describing the guarantees it 

provides.  Finally, previous work in automating aspects of security protocol analysis has 

been discussed.
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III. Methodology 

3.1 Chapter Overview 

     The purpose of this chapter is to introduce the methods that are employed in 

automating the authentication tests developed by Guttman et al [2, 5].  This chapter 

describes the Security Protocol Analyzer (SPA) tool developed for the purpose of this 

research.  The chapter also shows SPA’s analysis of a representative set of known 

protocols and basic examples in order to establish a baseline of reliability.  In Chapter 4, 

a much more diverse set of protocols is analyzed. 

     This chapter is laid out in the following manner: 

• Problem Review 

• Overview of software used 

• Java based protocol analysis 

• Demonstration of tests in the following environments: 

o Numerous one and two pass tests 

o Needham-Schroeder 

• Summary     

3.2 Problem Review 

     The problem that this research addresses is the effective automation of security 

protocol analysis, and in particular, the automatic recognition of authentication tests as 

defined by Guttman et al.  Guttman et al have developed three authentication tests that 

greatly simplify the tedious pen-and-paper proofs normally required to show if a security 
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protocol has certain correctness properties.  This research takes the next step and 

automates aspects of their work.  In the previous chapter, these tests and correctness 

properties have been defined and now the focus will shift to how occurrences of these 

tests are automatically identified using a tool developed in Java. 

3.3 Software Overview 

     The Java-based protocol analyzer was developed using the Java development 

environment TogetherSoft® version 6.0.  This application was executed on a Windows® 

2000 operating system.  The version of Java that TogetherSoft® 6.0 employs is 1.3.1.   

3.4 Java Based Protocol Analysis 

     The protocol analyzer uses a traditional software development approach of object-

oriented programming.  The analyzer uses dynamically created objects to represent 

different component classes, such as Principals, Messages and Text.  The next few 

sections outline the algorithm and the specific techniques used in the creation of the tool.   

3.4.1 Layout of Java Program 

     The Java-based program, called Security Protocol Analyzer (SPA), can be divided into 

two portions.  The first portion is the parsing portion.  The second portion is as the 

analysis portion.       
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Table 1 – Brief Description of SPA classes 
 

Class: Brief Description: 

ProtocolAnalyzer Main driver of program.  Contains main(). 

Encryption Checks encryption of messages against receiver and sender. Ensures 
proper parties are viewing messages. 

Protocol This is the root node of an abstract syntax tree representing a 
protocol.  It contains a list of Messages. 

Message An instance of message is instantiated as each message is read in 
from the input file.  A message consists of a sender, a receiver and 
the term sent. 

Sequence Since messages exist as concatenations of terms, we call this a 
sequence.  This class contains an iterator which is traversed during 
analysis on instances of Sequence. 

Term The primary abstract class that enables Text, Encryption, and 
Sequence to generically create functions for recursive use.  Two key 
methods for analysis, GetReadableText() and GetTextObj(), are 
established here. 

Text This class represents individual instances of each text.  If tagged with 
a * in the input file, a flag condition is set to show its new/fresh 
characteristic. 

Parser This class checks the syntax of the input file and verifies if it is legal 
or not.  It also builds an abstract syntax tree rooted at an instance of 
the Protocol class. 

Principal For each occurrence of a party within a protocol transaction, an 
instance of principal is generated.  Within it, the test conditions are 
checked within the addnonce() method as components get passed. 

      

     The main role of the parsing portion is to retrieve a file and import the contents into 

“iterators” that the analyzer steps through and analyzes.  It also builds the abstract syntax 

tree (AST), which is traversed during the analysis portion.  The parsing method could 

have been done numerous ways therefore not much attention is given to the specifics in 

this thesis but the authentication tests are strictly defined and hence that is where our 

focus lies.  Table 1 lays out brief descriptions of key classes in the SPA.  Sections 3.4.2 
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and 3.4.3 go into detailed specifics of the more important operations and give a more 

thorough description of the key classes as seen in the SPA class diagram, Figure 3.1.     

 

 Figure 3.1 – Class Diagram of SPA 

3.4.2 Description of Parsing Operation  

     The parsing of the SPA is performed as follows:  An input file (Figure 3.2) is parsed 

line by line into an abstract syntax tree with a Protocol object as the root.  A Protocol 

consists of a list of Message objects.  Each Message contains three portions: from, to and 

the message itself.  It is this list of messages that we walk through during the analysis 

portion.    

  A -> B : {A *Na1}Kb 
  B -> A : {Na1 *Nb1}Ka 
  A -> B: {Nb1} Kb 
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Figure 3.2 – Needham-Schroeder Protocol Input File 

     Figure 3.3 shows an example of the abstract syntax tree created during the initial 

parsing of a message.  As seen in Figure 3.3, whenever a message is broken down, an 

instance of Sequence, Encryption or Text is created.  Due to the recursive structure of 

message terms, within Encryption and Sequence lie further instances of Sequence, 

Encryption or Text.  The breakdown process continues recursively until individual Text 

instances are all that remain.  The parsing of the input file into AST’s completes the 

initial run of the SPA with respect to the input file.  The next operation performed is the 

analysis portion.   

 

Figure 3.3 – UML of Message Breakout 

 

3.4.3 Description of Analysis Operation  

     This section covers the key classes that perform the main analysis.  The 

ProtocolAnalyzer, Principal and Term classes are what drive the analysis portion of the 
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program.  The ProtocolAnalyzer class contains the main() function and hence is the 

driver for the program.  The program makes several passes through the list of messages 

during the analysis portion. 

     The first pass through the message list checks for potentially disqualifying conditions.  

For instance, one of the more common conditions is occurrence of an encrypted term 

within another encrypted term, thus negating the inner one’s use as a test component in 

accordance with criteria outlined by Guttman [5] and described in Chapter 2.  The SPA 

takes this encrypted term and stores it in a vector with any other disqualified encrypted 

terms.  If an encrypted term is not disqualified it is stored in another vector which 

contains potential test components.  Later on, these vectors are viewed to determine if a 

component received by a Principal is disqualified as a test component or not.    

     The second pass through the message list creates instances of the Principal class and 

stores them in a vector.  Recall that during the parsing process, each line of the input file 

generates a from, to and message.   The from and to are used to create these instantiations 

of Principal.  For example, using the example in Figure 3.2, in Figure 3.3 A and B are 

created as different instances of Principal.  However, the parser first checks to make sure 

a previous existence of that Principal does not exist, that way only one instantiation per 

principal occurs.  By having individual instantiations for each participant in the protocol, 

this allows each party to know what terms and components it has sent and received.    

     The third pass is where actual analysis of individual terms occurs.  Using Figure 3.2 as 

an illustration, whenever the first line is analyzed, individual terms A and Na (parsed into 

an AST as described earlier), are  stored individually in a sent items vector of A’s 
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instantiation of Principal.  B’s instantiation of Principal will store them in a received 

items vector.  As the SPA iterates through the list of messages, each principal, depending 

on its role as sender or receiver, checks its vectors of sent and received items and then 

applies the rules of the tests against that item.   With respect to Figure 3.2, the SPA 

output generated is shown in Figure 3.4.  This serves as a good overview regarding the 

analysis operation but there are two key functions that allow this to operate so effectively. 

     The first key function is the GetReadableText() function.  The analyzer calls the 

GetReadableText() function initially in main() to initiate the third pass, but as described 

shortly, the SPA actually traverses the tree through recursive calls of GetReadableText().  

This recursion happens because the GetReadableText() function is an abstract function 

stemming from abstract class Term.  In order to allow more effective analysis without 

duplication of functionality, Term was developed as an abstract class from which 

Encryption, Text and Sequence are all extended.  As the analyzer starts at the top of the 

AST, based on whatever instantiation lies at that particular node, the SPA knows what 

class’ GetReadableText() function to call.  From within this Term, it steps down to the 

next node and the SPA then calls that particular instance of GetReadableText().  This is 

especially important for encrypted terms.  If the analyzer is on an encrypted node, it will 

determine if the receiver can view the message through string comparisons on the key 

and Principals identity (For example: Ka is viewable by A only).  As the analyzer steps 

further down the tree, based on the results of whether a Principal can read the encrypted 

portion or not, the analyzer will know which information to pass into that Principals 

instantiation, thus, a received item, if not readable, will not be entered into a receiver’s 
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vector of received terms!  (The actual addition of individual text into a principals’ 

relevant vectors is done through the addNonce() function, described shortly.)  Once the 

end node of the AST is reached, we know from earlier that this will be an instance of an 

individual Text.  At this point, when GetReadableText() is called, the values of the 

arguments at this point are now ready to be added directly into each Principal’s relevant 

vectors.   

     Within the Text class’ GetReadableText() function is called the other key function: 

addNonce().  AddNonce() is a method of the Principal class that is only called from 

within each individual instance of Text.  In addNonce(), the following arguments get 

passed in: the vectors of bad test components, good test components, the name of the 

individual Text currently being analyzed, as determined by being at the bottom of the 

AST, and whether or not the sender/receiver can read the individual Text.  

GetReadableText() of that particular instance of Text will traverse the vector of Principals 

then whenever sender and receiver get matched, that particular Principal has its 

addNonce() function called.  It is within addNonce(), since we are getting all the key 

information at this time for this particular Text, that the existence of the tests with 

relation to this particular Text are determined.  The determination of the existence of tests 

follows strictly the criteria defined by Guttman [5] and covered extensively in Chapter 2.  

3.5 Specific Protocols analyzed using Java 

     In this section, the SPA is tested with simple input to demonstrate its ability to find 

examples of the authentication tests under a variety of basic conditions.   For example, 

simple one-pass and two-pass runs are performed using both asymmetric and symmetric 
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cryptography.  The chapter then culminates with the SPA running the Needham-

Schroeder protocol in both a normal setting and a setting with intentional flaws.  Once 

these tests are completed, a reliable baseline is established for use of the SPA in 

identifying occurrences of outgoing, incoming and unsolicited tests in unfamiliar 

protocols. 

3.5.1 Verifying Presence of Tests  

     In the first example, A executes an incoming test.  A sends out plain text and receives 

it back properly encrypted with a symmetric key, thus completing an incoming test.  The 

layout for all tests is similar in nature.  The SPA shows encryption keys used then 

proceeds to identify the existence of any tests or errors.   

 
File Contents: 
A -> B : *Na1 A 
B -> A : {Na1 B}Kab 
 
<Parties> : <Message> >> A -> B : *Na1 A 
Sender may be attempting to initiate an incoming test by transmitting Na1 in the clear. 
 
<Parties> : <Message> >> B -> A : {Na1 B}Kab 
Encrypt term(s) < Na1 B > with key Kab is readable by both sender/receiver. 
The unencrypted/fresh nonce Na1 has been received back in new component: {Na1 B}Kab 
Incoming test for A because fresh term Na1 was sent out earlier in < Na1 > 
 
 
     In this example, a simple two-pass run of an outgoing test is demonstrated: 

File Contents: 
A -> B : {*Na1 A}Kab 
B -> A : Na1 B 
 
<Parties> : <Message> >> A -> B : {*Na1 A}Kab 
Encrypt term(s) < *Na1 A > with key Kab is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
Unsolicited test for B because of nonce Na1 within test component < {Na1 A}Kab >  
 
<Parties> : <Message> >> B -> A : Na1 B 
The encrypted/fresh nonce Na1 has been received back in new component: Na1 
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Outgoing test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kab >  
 
     In the first pass, the SPA identifies what key is used for encryption and states which 

parties can view that part of the message.  Then, it states that the sender may be initiating 

an outgoing test.  Also, based on the use of symmetric cryptography, as indicated by the 

key format, it also indicates the presence of an unsolicited test from B’s perspective.  B 

transforms the message through decryption, once again, assuming the key is safe, then 

retransmits it back to A.  Finally, it shows A completing an outgoing test because he is 

receiving his fresh nonce back in altered form.   

     In the below example, a simple case of nested encryption is used to demonstrate 

another example of an outgoing test.  In this case, A’s fresh nonce is inside an encrypted 

term, which is itself encrypted.  On the first pass, the SPA shows both terms’ encryption 

keys and states how A is attempting to initiate an outgoing test.  On the second pass, the 

SPA verifies that A has completed his outgoing test.  Notice on this pass there is no 

unsolicited test because the communicating parties are using asymmetric cryptography, 

as indicated by their key format.  Recall from Chapter 2, all public keys are assumed to 

be compromised.  Also, although not shown by the SPA, the validity of this test depends 

on B’s private key not being compromised.   

 
File Contents: 
A -> B : A {{*Na1}Ka}Kb 
B -> A : {Na1}Ka 
 
<Parties> : <Message> >> A -> B : A {{*Na1}Ka}Kb 
Encrypted term(s) < {*Na1}Ka > with key Kb is readable by recipient only. 
Encrypted term(s) < *Na1 > with key Ka is readable by sender only. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
 
<Parties> : <Message> >> B -> A : {Na1}Ka 
Encrypted term(s) < Na1 > with key Ka is readable by recipient only. 
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The encrypted/fresh nonce Na1 has been received back in new component: {Na1}Ka 
Outgoing test for A because fresh term Na1 was sent out earlier in < {{Na1}Ka}Kb > 
 
     The next example is a more common example of what one would expect during a 

routine transaction using symmetric cryptography.  In the example, it shows the 

unsolicited test that exists due to the symmetric cryptography used, as indicated by the 

key format used, but more importantly because of the valid test component received by 

B.  The only thing to note here is the phrase incoming/outgoing test.  This is not a new 

test.  Recall from Chapter 2, the outgoing test is sent out encrypted and received back 

altered, possibly unencrypted; the incoming test is sent out in either format but received 

back encrypted.  Therefore, this example fulfills the requirements of both tests and could 

be called either, thus it is termed an outgoing/incoming test! 

File Contents: 
A -> B : {*Na1 A}Kab 
B -> A : {Na1 B}Kab 
 
<Parties> : <Message> >> A -> B : {*Na1 A}Kab 
Encrypt term(s) < *Na1 A > with key Kab is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
Unsolicited test for B because of nonce Na1 within test component < {Na1 A}Kab >  
 
<Parties> : <Message> >> B -> A : {Na1 B}Kab 
Encrypt term(s) < Na1 B > with key Kab is readable by both sender/receiver. 
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 B}Kab 
Outgoing/Incoming test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kab >  
 

     In this next example, it appears as though there should be a simple incoming test.  

However, this is not the case.  A sends out an unencrypted fresh term and receives it back 

encrypted.  The SPA indicates that principal A may be attempting to initiate an incoming 

test; however, because everyone knows public keys, A cannot be sure who encrypted his 

plain text.  The SPA’s adherence to the notion of compromised public keys, as discussed 

in Chapter 2, disallows a completed incoming test. 
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File Contents: 
A -> B : *Na1 A 
B -> A : {Na1 B}Ka 
 
<Parties> : <Message> >> A -> B : *Na1 A 
Sender may be attempting to initiate an incoming test by transmitting Na1 in the clear. 
 
<Parties> : <Message> >> B -> A : {Na1 B}Ka 
Encrypted term(s) < Na1 B > with key Ka is readable by recipient only. 
      

     The final example is very similar to the earlier one in which a term is sent out 

encrypted and received back altered.  This represents an outgoing test for A because test 

component {*Na1 A}Kb is transmitted to B.  B receives the test component, based on the 

input file composition, transforms the test component into {Na1 B}Ka and transmits it 

back to A.  Since encryption is correct and private keys are assumed safe, we see a valid 

instance of an outgoing test. 

File Contents: 
A -> B : A {*Na1 A}Kb 
B -> A : B {Na1 B}Ka 
 
<Parties> : <Message> >> A -> B : A {*Na1 A}Kb 
Encrypted term(s) < *Na1 A > with key Kb is readable by recipient only. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
 
<Parties> : <Message> >> B -> A : B {Na1 B}Ka 
Encrypted term(s) < Na1 B > with key Ka is readable by recipient only. 
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 B}Ka 
Outgoing test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kb >  

3.5.2 Analyzing Needham-Schroeder 

     The above examples showed different examples of the outgoing, incoming and 

unsolicited tests.  In this section we expand upon this by running an actual protocol 

through the SPA.  The result of normally operating the Needham-Schroeder protocol in 

the SPA confirms the previously known existence [5] of outgoing tests in the protocol.  

Figure 3.4 shows the entire output for the original Needham-Schroeder protocol. 
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A -> B : {*Na1 A}Kb 
B -> A : {Na1 *Nb1}Ka 
A -> B : {Nb1}Kb 
 
<Parties> : <Message> >> A -> B : {*Na1 A}Kb 
Encrypted term(s) < *Na1 A > with key Kb is readable by recipient only. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
 
<Parties> : <Message> >> B -> A : {Na1 *Nb1}Ka 
Encrypted term(s) < Na1 *Nb1 > with key Ka is readable by recipient only. 
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 Nb1}Ka 
Outgoing test for A because fresh term Na1 was sent out earlier in < {Na1 A}Kb >  
Sender may be attempting to initiate an outgoing test by transmitting Nb1 in encrypted form.  
 
<Parties> : <Message> >> A -> B : {Nb1}Kb 
Encrypted term(s) < Nb1 > with key Kb is readable by recipient only. 
The encrypted/fresh nonce Nb1 has been received back in new component: {Nb1}Kb 
Outgoing test for B because fresh term Nb1 was sent out earlier in < {Na1 Nb1}Ka > 
 

Figure 3.4 – Output of running Needham-Schroeder in SPA 

     Although there are no surprises here, it is important that an actual protocol was run.  

From this, we are now able to move forward and test protocols where outcomes may not 

necessarily be expected.  The final test is to run the Needham-Schroeder protocol in 

slightly altered form, then using already known results [5], verify that the analyzer 

generated the correct results. 

     In this next test we present an altered form of Needham-Schroeder.  In Figure 3.5, we 

see several different erroneous/mischievous activities being performed.  The first is 

principal C trying to resend a previous message.  The SPA generates no notice on this 

because it cannot assume this was intentional.  It may simply be acting as a relay.  From 

the legitimate test, it recognizes that A has received his fresh nonce back and therefore 

won’t reregister this as another outgoing test.  The next activity is that of B trying to 

initiate a conversation using A’s old nonce; once again no test is registered.  These 

duplicate transactions do occur several more times but to no avail.   
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A -> B : {A *Na}Kb 
B -> A : {Na *Nb}Ka 
C -> A : {Na Nb}Ka 
B -> A : {B Na}Ka 
A -> B : {Na}Kb 
A -> B : {Nb}Kb 
A -> C : {Nb}Kc 
 
<Parties> : <Message> >> A -> B : {A *Na}Kb 
Encrypted term(s) < A *Na > with key Kb is readable by recipient only. 
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.  
 
<Parties> : <Message> >> B -> A : {Na *Nb}Ka 
Encrypted term(s) < Na *Nb > with key Ka is readable by recipient only. 
The encrypted/fresh nonce Na has been received back in new component: {Na Nb}Ka 
Outgoing test for A because fresh term Na was sent out earlier in < {A Na}Kb >  
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.  
 
<Parties> : <Message> >> C -> A : {Na Nb}Ka 
Encrypted term(s) < Na Nb > with key Ka is readable by recipient only. 
 
<Parties> : <Message> >> B -> A : {B Na}Ka 
Encrypted term(s) < B Na > with key Ka is readable by recipient only. 
 
<Parties> : <Message> >> A -> B : {Na}Kb 
Encrypted term(s) < Na > with key Kb is readable by recipient only. 
 
<Parties> : <Message> >> A -> B : {Nb}Kb 
Encrypted term(s) < Nb > with key Kb is readable by recipient only. 
The encrypted/fresh nonce Nb has been received back in new component: {Nb}Kb 
Outgoing test for B because fresh term Nb was sent out earlier in < {Na Nb}Ka >  
 
<Parties> : <Message> >> A -> C : {Nb}Kc 
Encrypted term(s) < Nb > with key Kc is readable by recipient only. 

Figure 3.5 – Output of NS with duplicate transmission of nonce    

We learn from this example that the SPA is not being fooled with repetitive transactions. 

However, it is catching and printing the existence of the two legitimate outgoing tests that 

occur.  As one can see, there are numerous ways to arrange the order of these tests and 

the components within, but at this point we can be fairly certain the SPA is capable of 

finding the tests. 
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3.6 Summary 

In conclusion, this chapter covered in detail the basic operation of the SPA.  

Numerous test cases and the Needham-Schroeder protocol were run and we use them to 

establish a baseline of reliability.  Finally, there was a modification done to the Needham-

Schroeder protocol to show that obvious mistakes in a transaction, whether intentional or 

not, could be captured.  As a result of these tests, we’ve shown that the SPA is capable of 

detecting instances of incoming, outgoing and unsolicited authentication tests as well as 

basic improper events occurring during the course of a protocol run.  We also introduce 

something termed outgoing/incoming test, which is the case where a received term meets 

criteria for both outgoing and incoming tests as described in chapter two.  In the next 

chapter, we will expand upon this and run the SPA against numerous protocols that 

exhibit numerous characteristics.  
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IV. Analysis and Results 

4.1 Chapter Overview 

     This chapter demonstrates the results of running the SPA on several regular protocol 

runs.  These tests show if any authentications tests occur in the protocol and where.  

Following the discussion of normal protocol runs, several more ‘incorrect’, or seemingly 

incorrect, protocol runs are investigated.  The purpose of creating incorrect protocols is to 

show that the SPA is capable of discovering erroneous scenarios that may occur in 

protocols.  The means by which these particular scenarios are chosen is discussed later. 

4.2 Results of Protocol Analyses 

     This section covers the overall results of running known protocols.  As discussed 

earlier, protocols are grouped into categories.  Categories can be broken up into protocols 

that use symmetric cryptography verse asymmetric cryptography.  Another category is 

protocols which use trusted verse non-trusted third parties.  Although there do exist 

hybrid protocols, the protocols chosen most assuredly fit into the above categories.  The 

layout of the protocols is taken almost directly from [29]. 

     In Chapter 3, outgoing, incoming and unsolicited tests output is shown in great detail.  

In this section, since testing occurs on large established protocols, previously unseen 

output is displayed. Although warnings and errors are self explanatory, there is another 

test condition that is introduced that may not be self-evident.  The test is called a pseudo-

unsolicited test.  This test does not alter the definition of an unsolicited test in any way, 

but what it does do is show how one party is receiving a challenge from another that it 
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has previously sent a message to.  In other words, because both parties understand the 

protocol, A may expect something back from B, in one case, the minimum reply might be 

A’s fresh nonce.  However, simultaneously if B solicits a challenge of his own, A must 

now reply with the correct answer.  The reason for the slight name change is based upon 

the generic nature of the analyzer.  This analyzer is able to review any protocol without 

knowing how the protocol works.  But because of this, it does have to keep track of 

intercommunicating parties and know who is sending what to whom but does not 

necessarily know that a reply or request is part of the protocol.  Therefore, because a 

party has sent something to another means receiving something back from the party is not 

necessarily ‘unsolicited’. 

4.2.1 Wide Mouth Frog Protocol 

     The wide mouth frog protocol (Figure 4.1) involves the use of symmetric 

cryptography in conjunction with a trusted third party.  In this protocol, the initiating 

principal generates a temporary session key, along with a timestamp.  These are passed to 

the server, along with the identification of the party in which the initiating principal 

wishes to communicate.  The server then passes the timestamp and session key onto the 

intended recipient.   

     The SPA recognizes all known tests.  In the first message it correctly identifies the 

fact that A may be attempting to initiate two different outgoing tests.  This does not mean 

they are completed; only that A is transmitting a legitimate test component that contains 

two fresh terms.  S’s receipt of this valid test component with two fresh terms inside and 

the use of proper symmetric cryptography mean there exists two unsolicited tests from 
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S’s perspective.  In the second pass, S has created his own test component containing a 

fresh nonce and thus may be initiating his own outgoing test.  From B’s point of view, the 

receipt of this test component with two fresh terms, one generated by S and the other by 

A, means B has two unsolicited tests.  In this example, the SPA accurately detects all 

relevant tests that occur as shown in Figure 4.1. 

 
A -> S : A {*Na1 B *Kab}Kas 
S -> B : {*Ns1 A Kab}Kbs 
 
<Parties> : <Message> >> A -> S : A {*Na1 B *Kab}Kas 
Encrypt term(s) < *Na1 B *Kab > with key Kas is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
Unsolicited test for S because of nonce Na1 within test component < {Na1 B Kab}Kas >  
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.  
Unsolicited test for S because of nonce Kab within test component < {Na1 B Kab}Kas >  
 
<Parties> : <Message> >> S -> B : {*Ns1 A Kab}Kbs 
Encrypt term(s) < *Ns1 A Kab > with key Kbs is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting Ns1 in encrypted form.  
Unsolicited test for B because of nonce Ns1 within test component < {Ns1 A Kab}Kbs >  
Unsolicited test for B because of nonce Kab within test component < {Ns1 A Kab}Kbs >  

 
Figure 4.1 -Wide-Mouth Frog Protocol 

4.2.2 Yahalom Protocol 

     In the Yahalom protocol, the SPA starts out by showing how principal A is initiating 

an incoming test by sending out a fresh term.   The next message shows how B is 

initiating his own outgoing test and at the same by doing so, an unsolicited test occurs for 

the server, represented as S.  Also, an unsolicited test occurs for nonce Na because it is 

still fresh from S’s view and it exists within a valid test component.  The next step then 

shows how A gets its nonce, Na, back; thus completing the run of its incoming test.  At 

the same time, it shows an unsolicited test for A because of a fresh term within a valid 

test component from S.  In this pass, the first warning is generated.  S has generated one 
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key and is transmitting it in two separate components.  Because of this, if S were to get 

back one of these keys, it can not be certain from whom and therefore they are 

invalidated as a test component with regard to outgoing tests.  The final message sees an 

unsolicited test for B as well as B’s receipt of his fresh nonce back completing a run of an 

outgoing/incoming test. 

     The significance of running Yahalom in the SPA is that the SPA is challenged with 

multiple parties, multiple test cases and an encounter with its first negated test component 

and warning message.  The results of the SPA were expected so therefore we conclude 

that it has successfully completed analysis of this protocol. 

A -> B : A *Na 
B -> S : B {A Na *Nb}Kbs 
S -> A : {B *Kab Na Nb}Kas {A *Kab}Kbs 
A -> B : {A Kab}Kbs {Nb}Kab 
 
<Parties> : <Message> >> A -> B : A *Na 
Sender may be attempting to initiate an incoming test by transmitting Na in the clear. 
 
<Parties> : <Message> >> B -> S : B {A Na *Nb}Kbs 
Encrypt term(s) < A Na *Nb > with key Kbs is readable by both sender/receiver. 
Unsolicited test for S because of nonce Na within test component < {A Na Nb}Kbs >  
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.  
Unsolicited test for S because of nonce Nb within test component < {A Na Nb}Kbs > 
 
<Parties> : <Message> >> S -> A : {B *Kab Na Nb}Kas {A *Kab}Kbs 
Encrypt term(s) < B *Kab Na Nb > with key Kas is readable by both sender/receiver. 
Unsolicited test for A because of nonce Kab within test component < {B Kab Na Nb}Kas >  
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.  
The unencrypted/fresh nonce Na has been received back in new component: {B Kab Na Nb}Kas 
Incoming test for A because fresh term Na was sent out earlier in < Na > 
Unsolicited test for A because of nonce Nb within test component < {B Kab Na Nb}Kas > 
Encrypted term(s) < A *Kab > with key Kbs is readable by sender only. 
Warning: Sender is transmitting nonce Kab in two separate components, invalidating its use as an 
outgoing test. 
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kab in encrypted 
form.  
 
<Parties> : <Message> >> A -> B : {A Kab}Kbs {Nb}Kab 
Encrypted term(s) < A Kab > with key Kbs is readable by recipient only. 
Unsolicited test for B because of nonce Kab within test component < {A Kab}Kbs >  
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Encrypt term(s) < Nb > with key Kab is readable by both sender/receiver. 
The encrypted/fresh nonce Nb has been received back in new component: {Nb}Kab 
Outgoing/Incoming test for B because fresh term Nb was sent out earlier in < {A Na Nb}Kbs > 
 

Figure 4.2 – Yahalom Protocol  

4.2.3 Woo-Lam Protocol 

     In this section, the Woo-Lam protocol is examined.  From this point onward, rather 

than explain line by line each protocol, only key events of the protocol and the SPA’s 

conclusions are discussed.  In Woo-Lam, which is already identified to have a flaw [5], 

the SPA recognizes two tests.  The first is the completed incoming test from B’s view.  

The second is the unsolicited test from the servers’ point of view.  However in Guttman’s 

work, [5], he concludes that their does not exist a legitimate incoming test.  This 

reasoning is based on the notion that another node could produce a received component 

of the same form.  Since the SPA performs tests based on string comparisons, in a test 

like this, type comparisons would be more beneficial.  Hence, a model checking language 

may prove more effective in this type of scenario. 

A -> B : A 
B -> A : *Nb1 
A -> B : {Nb1}Kas 
B -> S : {A {Nb1}Kas}Kbs 
S -> B : {Nb1}Kbs 
 
<Parties> : <Message> >> A -> B : A 
 
<Parties> : <Message> >> B -> A : *Nb1 
Sender may be attempting to initiate an incoming test by transmitting Nb1 in the clear. 
 
<Parties> : <Message> >> A -> B : {Nb1}Kas 
Encrypted term(s) < Nb1 > with key Kas is readable by sender only. 
 
<Parties> : <Message> >> B -> S : {A {Nb1}Kas}Kbs 
Encrypt term(s) < A {Nb1}Kas > with key Kbs is readable by both sender/receiver. 
Encrypted term(s) < Nb1 > with key Kas is readable by recipient only. 
Unsolicited test for S because of nonce Nb1 within test component < {Nb1}Kas >  
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<Parties> : <Message> >> S -> B : {Nb1}Kbs 
Encrypt term(s) < Nb1 > with key Kbs is readable by both sender/receiver. 
The unencrypted/fresh nonce Nb1 has been received back in new component: {Nb1}Kbs 
Incoming test for B because fresh term Nb1 was sent out earlier in < Nb1 > 
 

Figure 4.3 – Woo-Lam Protocol 

4.2.4 Neuman-Stubblebine Protocol 

     The next protocol reviewed is the Neuman-Stubblebine protocol.  In this test, two 

different scenarios are executed.  The first (Figure 4.4) puts the * tag on the nonces and 

session keys generated by the server and the ticket generated by B.  In other words, 

anything created fresh and unique is tagged in order to identify all potential tests.  The 

second run (Figure 4.5) shows the analysis done without placing the * on the keys and 

tickets generated by the different parties.  The reason for this is to show that in order to 

detect the presence of tests, it is important that the analyzers of the protocol know what 

they intend to use as unique/fresh terms, thus they have more flexibility when doing 

analysis.   

     In the first test, numerous examples of unsolicited tests are shown due to the sheer 

volume of freshly tagged terms.  At this point, it is important to note that the SPA does 

not disqualify any components but does make note of the fact that in step 3 a fresh term 

(a key) is being transmitted in two components.  Although this negates their validity as 

outgoing tests, the SPA still makes the correct assessment and determines that unsolicited 

tests involving these components do occur.   

A -> B : A *Na 
B -> S : B {A Na *tb}Kbs *Nb 
S -> A : {B Na *Kab tb}Kas {A *Kab tb}Kbs Nb 
A -> B : {A *Kab tb}Kbs {Nb}Kab 
 
<Parties> : <Message> >> A -> B : A *Na 
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Sender may be attempting to initiate an incoming test by transmitting Na in the clear. 
 
<Parties> : <Message> >> B -> S : B {A Na *tb}Kbs *Nb 
Encrypt term(s) < A Na *tb > with key Kbs is readable by both sender/receiver. 
Unsolicited test for S because of nonce Na within test component < {A Na tb}Kbs >  
Sender may be attempting to initiate an outgoing test by transmitting tb in encrypted form.  
Unsolicited test for S because of nonce tb within test component < {A Na tb}Kbs >  
Sender may be attempting to initiate an incoming test by transmitting Nb in the clear. 
 
<Parties> : <Message> >> S -> A : {B Na *Kab tb}Kas {A *Kab tb}Kbs Nb 
Encrypt term(s) < B Na *Kab tb > with key Kas is readable by both sender/receiver. 
The unencrypted/fresh nonce Na has been received back in new component: {B Na Kab tb}Kas 
Incoming test for A because fresh term Na was sent out earlier in < Na > 
Unsolicited test for A because of nonce Kab within test component < {B Na Kab tb}Kas >  
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.  
Unsolicited test for A because of nonce tb within test component < {B Na Kab tb}Kas >  
Encrypted term(s) < A *Kab tb > with key Kbs is readable by sender only. 
Warning: Sender is transmitting nonce Kab in two separate components, invalidating its use as an 
outgoing test. 
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kab in encrypted 
form.  
 
<Parties> : <Message> >> A -> B : {A *Kab tb}Kbs {Nb}Kab 
Encrypted term(s) < A *Kab tb > with key Kbs is readable by recipient only. 
Unsolicited test for B because of nonce Kab within test component < {A Kab tb}Kbs >  
The encrypted/fresh nonce tb has been received back in new component: {A Kab tb}Kbs 
Outgoing/Incoming test for B because fresh term tb was sent out earlier in < {A Na tb}Kbs >  
Encrypt term(s) < Nb > with key Kab is readable by both sender/receiver. 
The unencrypted/fresh nonce Nb has been received back in new component: {Nb}Kab 
Incoming test for B because fresh term Nb was sent out earlier in < Nb > 
 

Figure 4.4 – Neuman-Stubblebine with Tags on Keys/Tickets 

     In Figure 4.5, the Neuman-Stubblebine is run on the SPA without attaching the * to 

the keys or ticket.  The only difference here is that it follows more closely with the results 

made by Guttman [5].  However, it is not incorrect to show a key or timestamp, generated 

similarly to a nonce, as fresh and denoting it with a fresh identifier as previously shown.  

Nor does it negate the conclusion of the previous example. 

A -> B : A *Na1 
B -> S : B {A *Na1 Tb}Kbs *Nb1 
S -> A : {B Na1 Kab Tb}Kas {A Kab Tb}Kbs Nb1 
A -> B : {A Kab Tb}Kbs {Nb1}Kab 
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<Parties> : <Message> >> A -> B : A *Na1 
Sender may be attempting to initiate an incoming test by transmitting Na1 in the clear. 
 
<Parties> : <Message> >> B -> S : B {A *Na1 Tb}Kbs *Nb1 
Encrypt term(s) < A *Na1 Tb > with key Kbs is readable by both sender/receiver. 
Sender is attempting to intiate a test with an old/invalidated nonce! 
Unsolicited test for S because of nonce Na1 within test component < {A Na1 Tb}Kbs >  
Sender may be attempting to initiate an incoming test by transmitting Nb1 in the clear. 
 
<Parties> : <Message> >> S -> A : {B Na1 Kab Tb}Kas {A Kab Tb}Kbs Nb1 
Encrypt term(s) < B Na1 Kab Tb > with key Kas is readable by both sender/receiver. 
The unencrypted/fresh nonce Na1 has been received back in new component: {B Na1 Kab Tb}Kas 
Incoming test for A because fresh term Na1 was sent out earlier in < Na1 > 
Encrypted term(s) < A Kab Tb > with key Kbs is readable by sender only. 
 
<Parties> : <Message> >> A -> B : {A Kab Tb}Kbs {Nb1}Kab 
Encrypted term(s) < A Kab Tb > with key Kbs is readable by recipient only. 
Encrypt term(s) < Nb1 > with key Kab is readable by both sender/receiver. 
The unencrypted/fresh nonce Nb1 has been received back in new component: {Nb1}Kab 
Incoming test for B because fresh term Nb1 was sent out earlier in < Nb1 > 
 

Figure 4.5 – Neuman-Stubblebine w/o Tags on Keys/Tickets 

4.2.5 Needham-Schroeder with Server 

     In this test, the Needham-Schroeder protocol is executed on the SPA again.  However, 

unlike before, the server portion of the protocol is included (Figure 4.6).  This protocol is 

drawn directly from [29].  However, for clarification, the keys  Kas and Kbs are used to 

show when the server is communicating with A and B specifically.  Normal operation of 

the protocol entails the server using its private key for encryption of these messages and 

assumes both parties have the servers’ public key.  The use of this key format does not 

alter the results of the test. 

A -> S : A B 
S -> A : {Kb B}KaS 
A -> B : {A *Na}Kb 
B -> S : B A 
S -> B : {Ka A}KbS 
B -> A : {Na *Nb}Ka 
A -> B : {Nb}Kb 
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<Parties> : <Message> >> A -> S : A B 
 
<Parties> : <Message> >> S -> A : {Kb B}KaS 
Encrypt term(s) < Kb B > with key KaS is readable by both sender/receiver. 
 
 
<Parties> : <Message> >> A -> B : {A *Na}Kb 
Encrypted term(s) < A *Na > with key Kb is readable by recipient only. 
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.  
 
<Parties> : <Message> >> B -> S : B A 
 
<Parties> : <Message> >> S -> B : {Ka A}KbS 
Encrypt term(s) < Ka A > with key KbS is readable by both sender/receiver. 
 
<Parties> : <Message> >> B -> A : {Na *Nb}Ka 
Encrypted term(s) < Na *Nb > with key Ka is readable by recipient only. 
The encrypted/fresh nonce Na has been received back in new component: {Na Nb}Ka 
Outgoing test for A because fresh term Na was sent out earlier in < {A Na}Kb >  
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.  
 
<Parties> : <Message> >> A -> B : {Nb}Kb 
Encrypted term(s) < Nb > with key Kb is readable by recipient only. 
The encrypted/fresh nonce Nb has been received back in new component: {Nb}Kb 
Outgoing test for B because fresh term Nb was sent out earlier in < {Na Nb}Ka > >  
 

Figure 4.6 – Needham-Schroeder Protocol (w/ Server) 

     This test results in output similar to earlier tests with Needham-Schroeder.  The only 

real difference is the interaction with the server that occurs between each party.  

4.2.6 Kerberos Protocol 

     The Kerberos protocol results are very similar to Neuman-Stubblebine.  In Chapter 2, 

an in-depth description of how this protocol works is given.  The layout used here, which 

contains more specific information in each message, is taken directly from [29].   

Regarding the analysis, there are no surprises in the output.  The only subjective action 

was not to tag all keys and timestamps as fresh, even though they are.  The reason is that, 

based on the Neuman-Stubblebine output, nothing further would be gained from this 

except a more lengthy output. 
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C -> A : U G L1 *N1 
A -> C : U {U C G *Kcg Tst Tex}Kag {G *Kcg Tst Tex N1}Ku 
C -> G : S L2 *N2 {U C G *Kcg Tst Tex}Kag {C *T1}Kcg 
G -> C : U {U C S *Kcs Tst1 Tex1}Kcg {S *Kcs Tst1 Tex1 N2}Kcg 
C -> S : {U C S Kcs Tst1 Tex1}Kcg {C *T2}Kcs 
S -> C : {T2}Kcs 
 
<Parties> : <Message> >> C -> A : U G L1 *N1 
Sender may be attempting to initiate an incoming test by transmitting N1 in the clear. 
 
<Parties> : <Message> >> A -> C : U {U C G *Kcg Tst Tex}Kag {G *Kcg Tst Tex N1}Ku 
Encrypted term(s) < U C G *Kcg Tst Tex > with key Kag is readable by sender only. 
Sender may be attempting to initiate an outgoing test by transmitting Kcg in encrypted form.  
Encrypted term(s) < G *Kcg Tst Tex N1 > with key Ku is readable by neither sender nor receiver. 
Warning: Sender is transmitting nonce Kcg in two separate components, invalidating its use as an 
outgoing test. 
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kcg in encrypted 
form.  
 
<Parties> : <Message> >> C -> G : S L2 *N2 {U C G *Kcg Tst Tex}Kag {C *T1}Kcg 
Sender may be attempting to initiate an incoming test by transmitting N2 in the clear. 
Encrypted term(s) < U C G *Kcg Tst Tex > with key Kag is readable by recipient only. 
Unsolicited test for G because of nonce Kcg within test component < {U C G Kcg Tst Tex}Kag >  
Encrypt term(s) < C *T1 > with key Kcg is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting T1 in encrypted form.  
Unsolicited test for G because of nonce T1 within test component < {C T1}Kcg >  
 
<Parties> : <Message> >> G -> C : U {U C S *Kcs Tst1 Tex1}Kcg {S *Kcs Tst1 Tex1 N2}Kcg 
Encrypt term(s) < U C S *Kcs Tst1 Tex1 > with key Kcg is readable by both sender/receiver. 
Pseudo-unsolicited test for C because Kcs is a newly received fresh nonce, but C has sent items to G 
previously. 
Sender may be attempting to initiate an outgoing test by transmitting Kcs in encrypted form.  
Encrypt term(s) < S *Kcs Tst1 Tex1 N2 > with key Kcg is readable by both sender/receiver. 
Warning: C is seeing Kcs again...but it's tagged with * (fresh) identifier! 
Warning: Sender is transmitting nonce Kcs in two separate components, invalidating its use as an 
outgoing test. 
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kcs in encrypted 
form.  
The unencrypted/fresh nonce N2 has been received back in new component: {S Kcs Tst1 Tex1 
N2}Kcg 
Incoming test for C because fresh term N2 was sent out earlier in < N2 > 
 
<Parties> : <Message> >> C -> S : {U C S Kcs Tst1 Tex1}Kcg {C *T2}Kcs 
Encrypted term(s) < U C S Kcs Tst1 Tex1 > with key Kcg is readable by sender only. 
Encrypt term(s) < C *T2 > with key Kcs is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting T2 in encrypted form.  
Unsolicited test for S because of nonce T2 within test component < {C T2}Kcs >  
 
<Parties> : <Message> >> S -> C : {T2}Kcs 
Encrypt term(s) < T2 > with key Kcs is readable by both sender/receiver. 
The encrypted/fresh nonce T2 has been received back in new component: {T2}Kcs 
Outgoing/Incoming test for C because fresh term T2 was sent out earlier in < {C T2}Kcs > 
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Figure 4.7 – Kerberos Protocol 

  4.2.7 Analyzing Otway-Rees 

     In this section, the Otway-Rees protocol is analyzed using the SPA.  Figure 4.8 shows 

the output generated from the SPA.  

 
A -> B : *M A B {*Na1 *M A B}Kas 
B -> S : M A B {Na1 M A B}Kas {*Nb1 M A B}Kbs 
S -> B : M {Na1 *Kab}Kas {Nb1 *Kab}Kbs 
B -> A : M {Na1 Kab}Kas 
 
<Parties> : <Message> >> A -> B : *M A B {*Na1 *M A B}Kas 
Sender may be attempting to initiate an incoming test by transmitting M in the clear. 
Encrypted term(s) < *Na1 *M A B > with key Kas is readable by sender only. 
Sender may be attempting to initiate an outgoing test by transmitting Na1 in encrypted form.  
Sender may be attempting to initiate an outgoing test by transmitting M in encrypted form.  
Sender is sending the same nonce M out both encrypted and plain. 
It may only be used to complete an incoming test. 
 
<Parties> : <Message> >> B -> S : M A B {Na1 M A B}Kas {*Nb1 M A B}Kbs 
Encrypted term(s) < Na1 M A B > with key Kas is readable by recipient only. 
Unsolicited test for S because of nonce Na1 within test component < {Na1 M A B}Kas >  
Unsolicited test for S because of nonce M within test component < {Na1 M A B}Kas >  
Encrypt term(s) < *Nb1 M A B > with key Kbs is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting Nb1 in encrypted form.  
Unsolicited test for S because of nonce Nb1 within test component < {Nb1 M A B}Kbs >  
 
<Parties> : <Message> >> S -> B : M {Na1 *Kab}Kas {Nb1 *Kab}Kbs 
Encrypted term(s) < Na1 *Kab > with key Kas is readable by sender only. 
Sender may be attempting to initiate an outgoing test by transmitting Kab in encrypted form.  
Encrypt term(s) < Nb1 *Kab > with key Kbs is readable by both sender/receiver. 
The encrypted/fresh nonce Nb1 has been received back in new component: {Nb1 Kab}Kbs 
Outgoing/Incoming test for B because fresh term Nb1 was sent out earlier in < {Nb1 M A B}Kbs >  
Pseudo-unsolicited test for B because Kab is a newly received fresh nonce, but B has sent items to S 
previously. 
Warning: Sender is transmitting nonce Kab in two separate components, invalidating its use as an 
outgoing test. 
Sender may be attempting to initiate an outgoing test by transmitting an invalid Kab in encrypted 
form.  
 
<Parties> : <Message> >> B -> A : M {Na1 Kab}Kas 
Encrypted term(s) < Na1 Kab > with key Kas is readable by recipient only. 
The encrypted/fresh nonce Na1 has been received back in new component: {Na1 Kab}Kas 
Outgoing/Incoming test for A because fresh term Na1 was sent out earlier in < {Na1 M A B}Kas >  
Unsolicited test for A because of nonce Kab within test component < {Na1 Kab}Kas > 
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Figure 4.8 – Output of Otway-Rees protocol run 

     In the Otway-Rees run there is nothing new being seen by the analyzer that has not 

already been demonstrated.  The only important thing to get from this is that the SPA is 

capable of accurately finding authentication tests and examples of basic 

mischievous/erroneous activity.  

4.3 Non-Regular Protocol Test Cases 

     This section examines several test cases meant to test the reliability of the SPA against 

cases that, although not representative of any real protocol, may undoubtedly surface in a 

similar form.  These test cases are essentially designed to test the analyzers ability to 

recognize common mischievous activities as defined in the Dolev-Yao threat model. 

4.3.1 Repeating Message 

     This section examines how the SPA can verify a case in which a principal retransmits 

an identical message back to the sender.  In Figure 4.9, principal A transmits a test 

component containing a fresh nonce.  From a receiver’s point of view, this constitutes an 

unsolicited test.  However, the intended recipient simply retransmits the message back to 

the sender.  Because the component received back is not altered, A cannot deduce that an 

intended party performed any action on the component; therefore, this does not constitute 

an outgoing test. 

A -> B : {*Na}Kab 
B -> A : {Na}Kab 
 
<Parties> : <Message> >> A -> B : {*Na}Kab 
Encrypt term(s) < *Na > with key Kab is readable by both sender/receiver. 
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.  
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Unsolicited test for B because of nonce Na within test component < {Na}Kab >  
 
<Parties> : <Message> >> B -> A : {Na}Kab 
Encrypt term(s) < Na > with key Kab is readable by both sender/receiver. 
The encrypted nonce Na has been received back, but in a duplicated transmission! 
The component {Na}Kab was sent out identically by this sender. 
 

Figure 4.9 - Repeating Message 

4.3.2 Sub Term Relationship of Encrypted Test Component 

     This section covers a test that demonstrates the analyzers ability to verify usage of test 

components as a whole in an improper manner.  Recall from Chapter 2 that the definition 

of a test component stipulates that a test component cannot exist as a proper subterm of 

any other term on any other regular node.  In this example, B attempts to use A’s 

encrypted message as his own ‘fresh’ term when communicating with C.  The analyzer, 

which looks ahead, realizes this and flags the original component as invalid!  Because of 

this, A is no longer able to complete is outgoing test.  Since we are using asymmetric 

cryptography, no unsolicited tests occur either.  The only test that might have occurred in 

this run would be an outgoing if C gets his fresh nonce back at a later time. 

 A -> B : {*Na}Kb 
B -> C : {{Na}Kb}Kc 
C -> B : {{Na}Kb *Nc}Kb 
B -> A : {Na Nc}Ka 
 
<Parties> : <Message> >> A -> B : {*Na}Kb 
Encrypted term(s) < *Na > with key Kb is readable by recipient only. 
{Na}Kb is an invalid test component because it's either a proper 
subterm of another component or is a duplicate transmission! 
Receiver is receiving an invalid test component {Na}Kb otherwise, it would be an unsolicited test 
with fresh term Na 
 
<Parties> : <Message> >> B -> C : {{Na}Kb}Kc 
Encrypted term(s) < {Na}Kb > with key Kc is readable by recipient only. 
Encrypted term(s) < Na > with key Kb is readable by sender only. 
 
<Parties> : <Message> >> C -> B : {{Na}Kb *Nc}Kb 
Encrypted term(s) < {Na}Kb *Nc > with key Kb is readable by recipient only. 
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Encrypted term(s) < Na > with key Kb is readable by recipient only. 
Sender may be attempting to initiate an outgoing test by transmitting Nc in encrypted form.  
 
<Parties> : <Message> >> B -> A : {Na Nc}Ka 
Encrypted term(s) < Na Nc > with key Ka is readable by recipient only. 
 

Figure 4.10 - Sub-Term Re-Encryption 

4.3.3 Unreadable Encryption on Messages 

   The final improper protocol test involves testing the SPA’s ability to check for proper 

encryption.  In Figure 4.11, the SPA is running the Needham-Schroeder protocol but on 

line two of the input file, the encryption ensures A cannot read the message.  Therefore, 

the SPA should not show any example of an outgoing test.  Correctly so, the SPA does 

not.  In fact, notice the SPA’s ability to demonstrate duplicate transmission of messages. 

A -> B : {*Na}Kb 
B -> A : {Na *Nb}Kb 
A -> B : {Na Nb}Kb 
 
<Parties> : <Message> >> A -> B : {*Na}Kb 
Encrypted term(s) < *Na > with key Kb is readable by recipient only. 
Sender may be attempting to initiate an outgoing test by transmitting Na in encrypted form.  
 
<Parties> : <Message> >> B -> A : {Na *Nb}Kb 
Encrypted term(s) < Na *Nb > with key Kb is readable by sender only. 
Sender may be attempting to initiate an outgoing test by transmitting Nb in encrypted form.  
 
<Parties> : <Message> >> A -> B : {Na Nb}Kb 
Encrypted term(s) < Na Nb > with key Kb is readable by recipient only. 
The encrypted nonce Nb has been received back, but in a duplicated transmission! 
The component {Na Nb}Kb was sent out identically by this sender. 
 

Figure 4.11 – Needham-Schroeder with improper encryption 

4.4 Summary 

     This chapter described the results of running several normal protocols and several 

incorrect protocols on the SPA.  The output of each test is described in detail in order for 

the reader to have a greater appreciation of what the tool is doing.  It is evident that the 
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tool provides a reliable means of determining if and where any authentication tests occur 

in the occurrence of a particular protocol.  The SPA also demonstrates its ability to 

ascertain improper behavior, as demonstrated in the ‘improper’ protocols.  Although the 

SPA is not designed to show weaknesses in a protocol, the absence of authentication tests 

should raise flags regarding a protocol and thus increase skepticism regarding its security.  

The next chapter gives final analysis of the results of running the SPA on communication 

protocols.
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V.  Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter provides conclusions as to the success of the research and provides a 

roadmap for future work in the field of protocol analysis.  It provides insight into what 

the Secure Protocol Analyzer accomplishes and how another modeling language may or 

may not provide better analysis of protocols in the future.   

5.1 Conclusions of Research 

The SPA successfully shows that protocol analysis with a tool developed in Java 

is highly valuable in the performance of protocol analysis.  In particular, the SPA is able 

to determine when and where outgoing, incoming and unsolicited tests occur within a 

protocol run.  Using string comparisons vice type comparisons requires specific values be 

given and does limit the application to analysis based on completed static runs.  However, 

putting together numerous protocols in generic text files proves much easier than 

individual protocol development as noted in other protocol analyzers [27, 11].  It also 

allows for much quicker analysis of the protocol because it does not have to dynamically 

create a search tree, instead it only examines the post-run state of the protocol as entered 

in the input text file.  In conclusion, the SPA allows the taking of any protocol as input in 

a standard text file and generates accurate output that shows occurrences of 

authentication tests, and it does so very quickly. 
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5.3 Significance of Research 

This research is significant because it creates a simple-to-use tool that effectively 

shows the presence of authentication tests.  Although there are numerous other methods 

for analyzing protocols, this method proves easy to use, accurate in its results and, more 

importantly, it enables any protocol to be entered in with minimal effort by the user.  

Another important result of this work is that output from the SPA can be tailored to one’s 

unique work.  This opens the possibility that output from the SPA could be used as input 

for other theorem checking tools or protocol analysis tools that may look for different 

aspects regarding a particular protocol.   Finally, this fast automation of analysis is 

important because the longer a protocol is left in use without in-depth analysis being 

performed on it, the more the chance of mischievous persons finding a potential 

weakness during its use and exploiting it. 

5.4 Recommendations for Future Research 

     Although the tool is fairly complete in its present form, added functionality will 

certainly improve the effectiveness of the tool.  For example, adding functionality that 

would include provisions for penetrator capabilities.  This would entail adding in a means 

to examine static runs and evaluate what information a penetrator is able to derive based 

on the Dolev-Yao threat model.  From this information, the tool might be able to start 

developing its own messages in an effort to show the user that it is possible to implant 

false messages leading to potential havoc on the principals.  Another function worth 

adding is that of showing all the keys used during the protocol exchange.  From this, the 

analyzer can show the keys actually used for encryption, whether they are safe or not, 
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then show the set assumed to be safe as defined by Guttman. Also, as stated in [5], since 

the authentication tests work even if n and n' are on different strands, add to the analyzer 

the ability to find the tests within different strands.  

     Another course of action is development in another modeling language altogether.  

Using an analyzer developed through a model checker would allow dynamic creation of 

search trees where numerous different states can be analyzed showing not only where and 

when authentication tests occur but also how to better develop the protocol to ensure the 

authentication tests do occur and that certain states are never reached.   

     The other main recommendation for future research is to produce a similar analyzer 

using the Maude language specifically.  As stated earlier, dynamic evaluation of 

protocols allows users to see first-hand the actual operation of a protocol run, versus the 

after effect of the run as entered in static format.  As explained in Chapter 2, Maude’s 

rewriting ability would enable it to generate dynamic states very easily.  With this 

dynamic evaluation, using a Dolev-Yao threat model, also built into the modeling 

language, the user can ascertain all the possible states that a protocol can be in and all the 

possible information that can be derived.  This includes states that the protocol should not 

necessarily be in.  Limitations would have to be placed on this method to ensure that state 

space explosion and other problems do not occur as described in greater detail in Chapter 

2.   

     Although there are numerous other protocol analyzers [11, 12, 24], none seem to 

exhibit the all-knowing power to ascertain whether protocols are susceptible to attack.  

However, built upon the foundation of a solid, powerful and easy to use tool the research 
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and tool generated here gives analysts a clear roadmap into the future of protocol 

analysis.
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Appendix A – Security Protocol Analyzer Code 

/* 
 * Parser.java 
 * 
 * Created on December 8, 2003 
 */ 
 
package protocolB.Parser; 
 
import java.io.*; 
import java.text.*; 
import protocolB.*; 
 
/** 
 * This class parses text from a Reader into a Protocol. 
 * @author  rgraham 
 */ 
public class Parser 
{ 
    /** Creates a new instance of Parser */ 
    public Parser(Reader in) { 
        this.in = in; 
    } 
 
    /** The lexical analyzer, which returns the next token from the 
Reader. */ 
    private Token nextToken() throws ParseException { 
        StringBuffer sb = new StringBuffer(); 
        int type; 
        int ch;  // It is so annoying that read returns int! 
 
        if (nextToken != null) 
            return nextToken; 
 
        // Get the next input character 
        ch = getChar(); 
 
        // Skip white space 
        while (ch == ' ' || ch == '\t' || ch == '\r') 
            ch = getChar(); 
 
        // Read until one complete token is found 
        if (ch == -1) 
            type = Token.EOF; 
        else if (ch == '\n') 
            type = Token.EOL; 
        else if (ch == '{') 
            type = Token.LBRACE; 
        else if (ch == '}') 
            type = Token.RBRACE; 
        else if (ch == ':') 
            type = Token.COLON; 
        else if (ch == '*') 
            type = Token.STAR; 
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        else if (ch == '-') { 
            getChar();  // Skip '>' without checking it 
            type = Token.ARROW; 
        } 
        else if (Character.isLetterOrDigit((char) ch)) { 
            do { 
                sb.append((char) ch); 
                ch = getChar(); 
            } while (Character.isLetterOrDigit((char) ch)); 
            prev = ch; 
            type = Token.IDENTIFIER; 
        } 
        else 
            throw new ParseException("Unrecognized character '" + ch + 
"'", offset); 
 
        nextToken = new Token(type, sb.toString()); 
        return nextToken; 
    } 
 
    /** Reads the next logical character from the input, which may be 
the 
     *  readahead character. 
     */ 
    private int getChar() { 
        int ch = -1; 
 
        if (prev != 0) { 
            ch = prev; 
            prev = 0; 
        } 
        else { 
            try { 
                ch = in.read(); 
            } catch (Exception e) { 
                System.err.println(e); 
                System.err.println("Aborting."); 
                System.exit(1); 
            } 
            offset++; 
        } 
 
        return ch; 
    } 
 
    public Protocol parse() throws ParseException { 
        Protocol p = new Protocol(); 
        Message m; 
 
        while (nextToken().getType() != Token.EOF) { 
            try { 
                m = parseMessage(); 
                p.addMessage(m); 
            } catch (ParseException e) { 
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                System.err.println(e + " at offset " + 
e.getErrorOffset()); 
                // Skip tokens until EOL or EOF 
                while (nextToken().getType() != Token.EOL 
                        && nextToken().getType() != Token.EOF) 
                    nextToken = null; 
            } 
        } 
        Match(Token.EOF); 
 
        return p; 
    } 
 
    /** Matches a specified token type against the next input token and 
throws an 
     *  exception if it doesn't match. 
     */ 
    protected Token Match(int t) throws ParseException { 
        Token next = nextToken(); 
 
        if (next.getType() != t) 
            throw new ParseException("Match Bad token " + 
Token.names[next.getType()] 
                                     + ", expected " + Token.names[t], 
offset); 
        nextToken = null;  // Consume the token 
        return next; 
    } 
 
    protected Encryption parseEncryption() throws ParseException { 
        Term m; 
        Text key; 
 
        Match(Token.LBRACE); 
        m = parseTerm(); 
        Match(Token.RBRACE); 
        key = parseText(); 
 
        return new Encryption(m, key); 
    } 
 
    protected Text parseText() throws ParseException { 
        boolean fresh = false; 
        Token next = nextToken(); 
 
        if (next.getType() == Token.STAR) { 
            fresh = true; 
            Match(Token.STAR); 
        } 
        Token id = Match(Token.IDENTIFIER); 
        return new Text(id.getText(), fresh); 
    } 
 
    protected Message parseMessage() throws ParseException { 
        Text from, to; 
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        Term m; 
 
        from = parseText(); 
        Match(Token.ARROW); 
        to = parseText(); 
        Match(Token.COLON); 
        m = parseTerm(); 
        Match(Token.EOL); 
        return new Message(from.getText(), to.getText(), m); 
    } 
 
    /** Parses a sequence of one or more Terms.  If more than one, it 
returns 
     *  a Sequence containing the Terms found. 
     */ 
    public Term parseTerm() throws ParseException { 
        Term term = null, nextTerm; 
        Token next = nextToken(); 
 
        while (next.getType() != Token.RBRACE && next.getType() != 
Token.EOL 
               && next.getType() != Token.EOF) { 
            if (next.getType() == Token.LBRACE) 
                nextTerm = parseEncryption(); 
            else if (next.getType() == Token.IDENTIFIER 
                     || next.getType() == Token.STAR) 
                nextTerm = parseText(); 
            else 
                throw new ParseException("Unexpected token " 
                                         + Token.names[next.getType()] 
                                         + ", expected LBRACE, 
IDENTIFIER or STAR", 
                                         offset); 
 
            if (term == null) 
                term = nextTerm; 
            else if (term instanceof Sequence) 
                ((Sequence) term).addTerm(nextTerm); 
            else { 
                Sequence temp = new Sequence(); 
                temp.addTerm(term); 
                temp.addTerm(nextTerm); 
                term = temp; 
            } 
            next = nextToken(); 
        } 
 
        if (term == null) 
            throw new ParseException("Term expected", offset); 
 
        return term; 
    } 
 
    protected Reader in; 
    private int prev = 0;              // Lookahead character 
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    private Token nextToken = null;     // Lookahead token 
    private int offset = 0; 
} 
 
/* 
 * Token.java 
 * 
 * Created on December 8, 2003 
 */ 
 
package protocolB.Parser; 
 
/** 
 * This class represents a single Token parsed from an input stream. 
 * 
 * @author  rgraham 
 */ 
public class Token { 
     
    /** Creates a new instance of Token */ 
    public Token(int type, String text) { 
        this.type = type; 
        this.text = text; 
    } 
 
    public int getType() { 
        return type; 
    } 
 
    public String getText() { 
        return text; 
    } 
 
    public static final int EOF = 0; 
    public static final int LBRACE = 1; 
    public static final int RBRACE = 2; 
    public static final int IDENTIFIER = 3; 
    public static final int ARROW = 4; 
    public static final int COLON = 5; 
    public static final int EOL = 6; 
    public static final int STAR = 7; 
 
    public static String names[] = { "EOF", "LBRACE", "RBRACE", 
"IDENTIFIER", 
                                     "ARROW", "COLON", "EOL", "STAR" }; 
 
    protected int type; 
    protected String text; 
} 
 
package protocolB; 
/** 
* Stephen Mancini and Robert Graham 
* AFIT/ENG 
* 24 Feb 2004 
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This is just the abstract class that encryption, sequence and term are 
extending 
*/ 
import java.util.*; 
public abstract class Term 
{ 
  public Term() 
  { } 
  public abstract void getReadableTexts(String lfrom, String lto, 
Vector p, 
  boolean readable, boolean sent_plain, String comp, 
  Vector list_of_components, Vector old_sent, Vector bad_test_comp, 
Vector temp_holdings, Vector text_obj, String type_enc); 
  //IF there is a better way to do this I just don't kow how right 
now...but at 
  //least I haven't reached 13 arguments, 12 means perfection -> 13 
means insanity!!! 
  public abstract void getComp(Vector bad_test_comp,Vector 
temp_holdings, String lfrom, String lto, boolean outside);//Go through 
tree and get {h}k 
  public abstract void getTextObj(Vector text_obj); 
 
} 
 
package protocolB; 
/** 
* Stephen Mancini and Robert Graham 
* AFIT/ENG 
* 24 Feb 2004 
RGraham says: 
 * A Text is a primitive (atomic) Term.  Common texts are principal 
names, keys 
 * and nonces.  A fresh text is one that is generated dynamically in 
such a way 
 * as to be unique among all other texts in use (at least to high 
probability, 
 * as by a pseudo-random process with a sufficient text length). 
 *  
What more can I say?  However, these is where principal.addnonce is 
called for each individual instance of a term. 
It then goes into that particular parties instance and checks their 
vectors to see if it is completing a test 
*/ 
import java.util.*; 
public class Text extends Term 
{ 
    /** Creates a new instance of Text */ 
    public Text(String text, boolean fresh) { 
        this.text = text; 
        this.fresh = fresh; 
        if (fresh) this.wasfresh = true; //if it is fresh it will have 
once been fresh 
        //this wasfresh should never change because it only says the 
term was fresh at one time 
    } 
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    public String getText() { 
        return text; 
    } 
 
    public boolean isFresh() { 
        return fresh; 
    } 
 
    public void getReadableTexts(String lfrom, String lto, Vector p, 
boolean readable, boolean sent_plain, String comp, 
                                 Vector list_of_components, Vector 
old_sent, Vector bad_test_comp, Vector temp_holdings, Vector text_obj, 
String type_enc) 
    { 
      int y = 0; 
 
      if (this.isFresh()) 
      { 
        while (y < p.size()) 
        { 
            Principal P = (Principal) p.elementAt(y); 
            if (P.lname.equalsIgnoreCase(lfrom)) 
            P.addnonce(text, "sender", lfrom, lto, readable, 
sent_plain, true, comp, list_of_components, old_sent, bad_test_comp, 
temp_holdings, text_obj, type_enc); 
 
            if (P.lname.equalsIgnoreCase(lto)) 
            P.addnonce(text, "receiver", lfrom, lto, readable, 
sent_plain, true, comp, list_of_components, old_sent, 
bad_test_comp,temp_holdings, text_obj, type_enc); 
            y++; 
        } 
      }//End of if it's fresh 
      else//Even if it's not fresh, if it was fresh the text_obj vector 
has each text object in it, that way I can get more about this 
particular text 
      { 
        int U = 0; 
        String temp = ""; 
        while (U < p.size()) 
        { 
           Principal P = (Principal) p.elementAt(U); 
 
           if (P.lname.equalsIgnoreCase(lto))//lto (below) used to be 
temp, not sure why?should have used comments earlier! 
           P.addnonce(text, "receiver", lfrom, lto, readable, 
sent_plain, false, comp, list_of_components, old_sent, bad_test_comp, 
temp_holdings, text_obj, type_enc); 
 
           U++; 
        } 
      }//End of else it's not 
    } 
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    public String toString() { 
        return (fresh ? "*" : "") + text; 
    } 
 
    public void getComp(Vector bad_test_comp, Vector temp_holdings, 
String lfrom, String lto, boolean outside)//, Vector text_obj) 
    {    }//End of get comp 
 
    public void getTextObj(Vector text_obj) 
    { 
      //I just want my text object which is the {}K stuff, in principal 
I'll check if my 
      //individual term is in the bad 't' 
      boolean toadd = false;//once I loop through vector if text is not 
in there this changes to true 
      int t = 0;   //Then it gets added to the list, ensures 
duplicates aren't added 
 
      while (t < text_obj.size()) 
      { 
        Text temptext = (Text) text_obj.elementAt(t); 
        if (temptext.getText().equalsIgnoreCase(this.getText())) 
            {  toadd = true;   } 
        t++; 
      }//end of while 
      if (!toadd) 
          {  text_obj.addElement(this);    } 
      toadd = false;//change it back regardless...even though when I 
come back it gets reset anyways!!! 
    }//End of getTextObj 
 
    protected String text; 
    protected boolean fresh; 
    protected boolean is_nonce; 
    protected boolean wasfresh; 
} 
 
package protocolB; 
import java.util.*; 
/** 
* Stephen Mancini and Robert Graham 
* AFIT/ENG 
* 24 Feb 2004 
 
 * A Sequence is a concatenation of Terms.  Concatenation is assumed to 
be 
 * associative. 
 *  This class calls getreadabletext based on type of comp it is 
working with... 
 * @author  rgraham 
 */ 
public class Sequence extends Term 
{ 
    /** Creates a new instance of Sequence */ 
    public Sequence() { 
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        terms = new ArrayList(); 
    } 
 
    public void addTerm(Term t) { 
        terms.add(t); 
    } 
 
    public ListIterator getTerms() { 
        return terms.listIterator(); 
    } 
 
    public void getComp(Vector bad_test_comp,Vector temp_holdings, 
String lfrom, String lto, boolean outside) 
    { 
      System.out.println("Enter getComp in sequ"); 
      for (ListIterator i = terms.listIterator(); i.hasNext(); ) 
      { 
        Term u = (Term) i.next(); 
        System.out.println(u.toString()); 
        if (u instanceof Sequence) 
        {//Once I am inside encryption, it has its own way of handling 
sequences...slightly different from sequence method 
          u.getComp(bad_test_comp, temp_holdings,lfrom, lto, outside); 
        } 
        else if (u instanceof Encryption)//This won't be internal 
encryption, that is handled inside encrpytion 
        {//This is the case where the message comes in for example:  A 
{a}K<-then it will call encryption to check inside this 
            temp_holdings.addElement(u.toString());//should add outside 
encryption to temp_holdings 
 
            ////////// 
       int max = u.toString().length(); 
             int Y = 0; 
             String hold = ""; 
             while (Y < max) 
             { 
               if (!u.toString().substring(Y, 
Y+1).equalsIgnoreCase("*")) 
               hold = hold + u.toString().substring(Y, Y+1); 
               Y++; 
             } 
             temp_holdings.addElement(hold); 
 
             String hold1 = hold + lfrom; 
             String hold2 = hold + lto; 
             if (!temp_holdings.contains(hold1)) 
                if (!temp_holdings.contains(hold2)) 
                temp_holdings.addElement(hold1); 
            ////////// 
 
            u.getComp(bad_test_comp,temp_holdings, lfrom, lto, 
outside);//Now let's go inside the encryption and check for term types 
        } 
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        else //What else could it be?//it must be text don't really 
care, it does nothing anyways 
            u.getComp(bad_test_comp,temp_holdings, lfrom, lto, 
outside); 
      } 
    }//End of get comp function 
 
    public void getTextObj(Vector text_obj) 
    { 
      for (ListIterator i = terms.listIterator(); i.hasNext(); ) 
      { 
        Term u = (Term) i.next(); 
        u.getTextObj(text_obj);//Call whatever instance of term the 
i.next is 
      } 
    } 
 
    public void getReadableTexts(String lfrom, String lto, Vector p, 
boolean readable, 
                                 boolean sent_plain, String comp, 
Vector list_of_components, 
                                 Vector old_sent, Vector bad_test_comp, 
Vector temp_holdings, Vector text_obj, String type_enc) 
    { 
      for (ListIterator i = terms.listIterator(); i.hasNext(); ) 
      { 
 
       Term u = (Term) i.next(); 
 
       if (u instanceof Sequence)//Could be more sequence of stuff 
       {    u.getReadableTexts(lfrom, lto, p, readable, sent_plain, 
comp, list_of_components, old_sent, bad_test_comp, temp_holdings, 
text_obj, type_enc);  } 
 
       else if (u instanceof Encryption) 
       { 
       String temporary = u.toString(); 
       u.getReadableTexts(lfrom, lto, p, readable, sent_plain, 
temporary, list_of_components, old_sent, bad_test_comp, temp_holdings, 
text_obj, type_enc); 
       list_of_components.addElement(temporary); 
       }       //Work with component then add it to "I've seen it 
already" vector 
 
       else //It's either encryption or text object... 
       {//don't add text to component list.... 
       u.getReadableTexts(lfrom, lto, p, readable, sent_plain, comp, 
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj, 
type_enc); 
       }//End of else it isn't sequence 
 
      }//End of for loop 
    }//End of GetReadable Texts() function 
 
    public String toString() { 
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        StringBuffer sb = new StringBuffer(); 
 
        for (ListIterator i = terms.listIterator(); i.hasNext(); ) { 
            sb.append(((Term) i.next()).toString()); 
            if (i.hasNext()) 
                sb.append(" "); 
        } 
 
        return sb.toString(); 
    } 
 
    protected List terms; 
} 
 
package protocolB; 
/** 
* Stephen Mancini and Robert Graham 
* AFIT/ENG 
* 23 Feb 2004 
 
This is where the main() function is.  This is the driver of the 
program!  Here is where the following occurs: 
individual instances of principal are created from the 'from' and 'to' 
of the message, they are placed in a vector  
and passed around.  Also, each message is broken into components and 
analyzed if it's a duplicate or subterm (subterm 
verification also is checked in encryption class).  Depending on check, 
the comp is placed in wither test_comp vector 
or bad_comp vector.   After this steps are done, it then starts the 
process by analyzing 1 message at a time, depending 
on what the instance is, it call getreadabletext.  Since a message may 
contain sub-parts, getreadabletext is also called 
recursively in other classes such as encryption and text. 
*/ 
//import Parser.*; 
import protocolB.Parser.*; 
import java.io.*; 
import java.util.*; 
import java.text.ParseException; 
 
public class ProtocolAnalyzer { 
 
     public static void main(String[] args) { 
        boolean err = false; 
        Protocol protocol = null; 
        Reader reader = null; 
 
        Vector num_parties = new Vector(); 
        Vector parties = new Vector(); 
        Vector list_of_components = new Vector(); //Lists all 
componentsfu 
        Vector old_sent = new Vector(); 
 
        Vector bad_test_comp = new Vector(); //this one only worries 
about 
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        //whether some t = {h}k is not a proper subcomponent of any 
regular node 
 
        Vector temp_holdings = new Vector();//This started out as a 
temp item but now has evolved into a real vector to be used 
        //it contains the encrypted terms that can act as legitimate 
test components... 
 
        Vector text_obj = new Vector(); //Make an instance of each text 
and pass it around 
 
        //The wonderful world of non-GUI main screens 
        System.out.println(); 
        System.out.println(">>>>>>>>>>>>>> Protocol-Analyzer Version 
1.2 <<<<<<<<<<<<<"); 
 
        if (args.length == 0) { 
            System.out.println("Nothing to parse."); 
            System.exit(1); 
        } 
 
        System.out.println("Parsing from file '" + args[0] + "'"); 
        try { 
            reader = new FileReader(args[0]); 
        } catch (Exception e) { 
            System.out.println(e); 
            System.exit(1); 
        } 
 
        Parser p = new Parser(reader); 
        try { 
            protocol = p.parse(); 
        } catch (ParseException e) { 
            System.out.println(e + " at offset " + e.getErrorOffset()); 
            err = true; 
        } catch (Exception e) { 
            System.out.println(e); 
            err = true; 
        } 
        if (!err) 
            System.out.println("File Contents:\n" + protocol); 
 
        for (ListIterator i = protocol.listIterator(); i.hasNext(); ) 
        { 
          Message t = (Message) i.next(); 
          //Lets count the number of unique parties in the given 
protocol 
          if (!num_parties.contains(t.from)) 
num_parties.addElement(t.from); 
          if (!num_parties.contains(t.to)) 
num_parties.addElement(t.to); 
        }//End of for loop which creates principal instances... 
 
          //Start creating instances of party for each player in the 
protocol 
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          String temp = ""; 
          int j = 0; 
          while (j<num_parties.size()) 
          { 
            temp = num_parties.elementAt(j).toString(); 
            Principal PPP = new Principal(temp); 
            parties.addElement(PPP); 
            temp = ""; 
            j++; 
          } 
 
///////////This section will run through the whole protocol and get all 
components for 
///////////later testing on subterm relationships... 
///////////Will also do the text_obj stuff in here 
          for (ListIterator i = protocol.listIterator(); i.hasNext(); ) 
          { 
            Message t = (Message) i.next(); 
            Term g = (Term) t.getTerm(); 
 
          if (g instanceof Sequence) 
          { 
             Sequence S = (Sequence) g; 
 
             for (ListIterator k = S.getTerms(); k.hasNext();) 
             { 
              Term l = (Term) k.next(); 
              l.getComp(bad_test_comp, temp_holdings, t.from, t.to, 
true); 
              l.getTextObj(text_obj); 
             }//End of for loop within sequence 
           }//End of if statement 
           else if (g instanceof Encryption) 
           { 
             temp_holdings.addElement(g); 
             //This part makes copy and puts it in without * so I can 
check for duplicate later 
             int max = g.toString().length(); 
             int Y = 0; 
             String hold = ""; 
             while (Y < max) 
             { 
               if (!g.toString().substring(Y, 
Y+1).equalsIgnoreCase("*")) 
               hold = hold + g.toString().substring(Y, Y+1); 
               Y++; 
             } 
             temp_holdings.addElement(hold); 
 
             String hold1 = hold + t.from; 
             String hold2 = hold + t.to; 
             if (!temp_holdings.contains(hold1)) 
                if (!temp_holdings.contains(hold2)) 
                temp_holdings.addElement(hold1); 
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             g.getComp(bad_test_comp, temp_holdings, t.from, t.to, 
true); 
             g.getTextObj(text_obj); 
           } 
           else if (g instanceof Text) 
           { 
             g.getComp(bad_test_comp, temp_holdings, t.from, t.to, 
true); 
             g.getTextObj(text_obj); 
           } 
          }//End of for loop through evaluation of entire protocol for 
potential test components 
 
      //What this part does is take the terms in my array of suspect 
comp's and remove *, so that 
      //someone doesn't retransmit exact same message back 
      //for example: {*N}Kmn  then resend as {N}Kmn is not valid 
outoging test! 
  /*        int h = 0; 
          int max =  bad_test_comp.size(); 
          String holder = ""; 
          String temporary2 = ""; 
          while (h < max) 
          { 
            holder = bad_test_comp.elementAt(h).toString(); 
            int y = 0; 
            while (y <holder.length()) 
            { 
                if (!holder.substring(y,y+1).equalsIgnoreCase("*")) 
                    temporary2 = temporary2 + holder.substring(y,y+1); 
                    y++; 
            }//End of innner while 
 
            bad_test_comp.addElement(temporary2); 
            temporary2 = ""; 
            h++; 
          }//End of outer while*/ 
 
          //Take out the * in the temp holding vector 
      /*    int h = 0; 
          int max =  temp_holdings.size(); 
          String holder = ""; 
          String temporary2 = ""; 
          while (h < max) 
          { 
            holder = temp_holdings.elementAt(h).toString(); 
            int y = 0; 
            while (y <holder.length()) 
            { 
                if (!holder.substring(y,y+1).equalsIgnoreCase("*")) 
                    temporary2 = temporary2 + holder.substring(y,y+1); 
                    y++; 
            }//End of innner while 
 
            temp_holdings.addElement(temporary2); 
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            temporary2 = ""; 
            h++; 
          }//End of outer while*/ 
 
///MORE DEBUG CODE  JUST DUMPS VECTORS OF COMP DEBUG CODE/// 
     /*     int K = 0; 
          while (K < bad_test_comp.size()) 
          {//This is for testing purposes 
           System.out.println("Bad test comp: " + 
bad_test_comp.elementAt(K).toString()); 
            K++; 
          } 
 
          K = 0; 
          while (K < temp_holdings.size()) 
          {//This is for testing purposes 
           System.out.println("Temp holdings: " + 
temp_holdings.elementAt(K).toString()); 
            K++; 
          }*/ 
 
//DEBUG CODE DEBUG CODE //Test the text_obj vector //DEBUG CODE 
     /*     int w = 0; 
          while (w < text_obj.size()) 
          { 
            Text temptext = (Text) text_obj.elementAt(w); 
            System.out.println("The PA output in vector is: " + 
temptext.toString()); 
            w++; 
          }//end of while*/ 
////////////End of my latest monster code which follows well that of 
the pasta class! Still, 
////////////it is quite ingenious....or I must be losing it, or I am a 
genious...only voice number 3 
////////////in my head knows the truth  :-) 
 
        for (ListIterator i = protocol.listIterator(); i.hasNext(); ) 
        { 
          Message t = (Message) i.next(); 
          System.out.println(); 
          System.out.println("<Parties> : <Message> >> " + 
t.toString()); 
          Term g = (Term) t.getTerm(); 
          String type_enc = "ASYM"; 
 
          if (g instanceof Sequence) 
          { 
            Sequence S = (Sequence) g; 
 
            for (ListIterator k = S.getTerms(); k.hasNext();) 
            { 
              Term l = (Term) k.next(); 
              l.getReadableTexts(t.from, t.to, parties, false, true, 
l.toString(), list_of_components, old_sent, bad_test_comp, 
temp_holdings, text_obj, type_enc); 
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            } 
          } 
          else if (g instanceof Encryption) 
          { 
          g.getReadableTexts(t.from, t.to, parties, false, true, 
g.toString(), list_of_components, old_sent, bad_test_comp, 
temp_holdings, text_obj, type_enc); 
          list_of_components.addElement(g.toString());//Work with 
component then add it to "I've seen it already" vector 
          } 
          else 
          { 
          g.getReadableTexts(t.from, t.to, parties, false, true, 
g.toString(), list_of_components, old_sent, bad_test_comp, 
temp_holdings, text_obj, type_enc); 
          }//Don't add plain text to comp vector 
        } 
 
    }//End of main 
}//End of class 
package protocolB; 
/** 
* Stephen Mancini and Robert Graham 
* AFIT/ENG 
* 23 Feb 2004 
 
This is a key class.  Here is where an addnonce, that is called from 
text class, ends up.  This has  
numerous flags and variables passed in.  This class does the test for 
tests.  Whenever the string value 
is set to sender, values sent in apply to that particular instance of 
sender, created in protocolanalyzer class. 
Likewise for receiver.  Not much else to say on this class except that 
tests work basically like this:  Whenever I 
am in sender mode, whatever nonce is passed in is placed in a vector 
(sent_nonces if encr/sent_unencrypted is sent unencr) 
As long as the comp isn't disqualified, that is.  These flags are 
checked mostly in all the if's of the receiver. 
Then whenever I am receiver, I check through my sent_nonce and 
sent_unencerypted vectors and see if the nonce passed 
in is there, if so it completes whatever test is applicable. 
 
*/ 
import java.util.*; 
public class Principal 
{ 
        String lname = ""; 
        String the_fresh_nonce = ""; 
        boolean lwasfresh = false; 
        Vector Sent_nonces = new Vector(); 
        Vector old_nonces = new Vector(); 
        Vector Sent_unencrypted = new Vector(); 
        Vector people_I_sent_stuff_to = new Vector(); 
        Vector messages_I_saw = new Vector(); 
        Vector sent_message_plain = new Vector(); 
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        Vector nonces_I_saw = new Vector(); 
        Vector comp_I_sent = new Vector(); 
        Text hold_text; 
 
        public Principal(String tname) 
        {    lname = tname;     } 
 
        public void addnonce(String nonce, String person, String from, 
String lto, boolean readable, boolean sent_plain, boolean is_fresh, 
            String comp, Vector list_of_components, Vector old_sent, 
Vector bad_test_comp, Vector temp_holdings, Vector text_obj, String 
type_enc) 
        {//readable is set in encryption class...isfresh is set in text 
class.... 
          //sent_plain is set to ture initially, then changed in 
encryption class 
          //from and lto only have values depending on whose key it is 
 
           String temp_comp = comp + lto;//This is how I set the string 
to look for duplicate retransmission of messages 
           //in other words, if I sent out lets say A sent out a comp 
{a}Ka and it is concat with A so it is {a}Ka + A = {a}KaA  then later I 
am receiving it back 
           //to check for duplication I concatenate the lto, 
           //let's say it is A getting it back, so then it becomes 
{a}KaA, well they match so obviously someone sent A's original comp 
back <-that's bad! 
 
          //This part goes and get's the object of the nonce and then 
we can ascertain it's current status (fresh or was fresh) 
          //that way if I want to add more info about a text object, I 
can and it's real easy to get now! 
          //Maybe I can add a value that says who the originator was, 
then I can populate that value here locally 
          //and then based on lfrom and lto I can decide more 
accurately about the tests? FUTURE WORK! 
          int U = 0; 
          while (U < text_obj.size()) 
          { 
            Text temptext = (Text) text_obj.elementAt(U); 
            if (nonce.equalsIgnoreCase(temptext.getText())) 
            {//Could populate any variable I want here that the 
particular text object might hold. (Future work?) 
              //or I could just stop the loop and work with temptext 
              hold_text = temptext; //I may need to use this object 
later..in fact I will!!! 
              lwasfresh = temptext.wasfresh; 
            }//End of if and end of populating variables! 
            U++; 
          }//End of while through text objects 
 
 
          //Let's go ahead and take out the * in the comp because a 
principal may try to resend it later after 
          //having read it and thus taking it's freshenss out... 
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          int B = 0; 
          String placeholder = ""; 
          while (B < comp.length()) 
          { 
           if (!comp.substring(B,B+1).equalsIgnoreCase("*")) 
            placeholder =  placeholder + comp.substring(B,B+1); 
            B++; 
          } 
          comp =  placeholder; 
  //Start the principal anaylsis from the sender's view 
            if (person.equals("sender")) 
            { 
 
              if (Sent_nonces.contains(nonce)) 
              { 
                int e = Sent_nonces.indexOf(nonce); 
                String old_comp = (String) Sent_nonces.elementAt(e + 
1); 
                //if (!comp.equalsIgnoreCase(old_comp)) 
               // if (temp_holdings.contains(comp) && 
temp_holdings.contains(old_comp) && comp.equalsIgnoreCase(old_comp)) 
               if (old_comp.indexOf(comp) > 0 | comp.indexOf(old_comp) 
> 0) 
                {} 
               else 
                { 
                  System.out.println("Warning: Sender is transmitting 
nonce " + nonce + " in two separate components, invalidating its use as 
an outgoing test."); 
                  Sent_nonces.removeElementAt(e + 1); 
                  Sent_nonces.removeElement(nonce); 
                  nonce = "an invalid " + nonce; 
                } 
              }//End of if sent_plain has it and I am resending in 
another comp 
 
              if (sent_plain && !nonces_I_saw.contains(nonce)) 
              { 
                //since these nonces are sent plain I have to go 
through vector of invalid test comp 
                //and see if later this nonce doesn't show up there, 
thus negating it's validity 
                int e = 0; 
                System.out.println("Sender may be attempting to 
initiate an incoming test by transmitting " + nonce + " in the 
clear."); 
                sent_message_plain.addElement(nonce); 
                sent_message_plain.addElement(comp); 
              }//End of initiating incoming test 
 
              //Start of initiating outgoing test 
              else if ((!bad_test_comp.contains(comp) || 
!temp_holdings.contains(comp)) && !nonces_I_saw.contains(nonce)) 
              {//If the test compopnent is in bad test comp and temp 
holdings it can't be used 
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               if ((bad_test_comp.contains(comp) && 
temp_holdings.contains(comp))) 
               { } 
               else 
               { 
                System.out.println("Sender may be attempting to 
initiate an outgoing test by transmitting " + nonce + " in encrypted 
form. "); 
                Sent_nonces.addElement(nonce); 
                Sent_nonces.addElement(comp); 
               } 
              } 
   ///End of initiating outgoing test 
 
              else if (temp_holdings.contains(comp) && 
bad_test_comp.contains(comp)) 
              { 
                System.out.println(comp + " is an invalid test 
component because it's either a proper"); 
                System.out.println("subterm of another component or is 
a duplicate transmission!"); 
              } 
 
              else if (nonces_I_saw.contains(nonce)) 
                System.out.println("Sender is attempting to intiate a 
test with an old/invalidated nonce!!!"); 
 
              if (readable) 
              {  people_I_sent_stuff_to.addElement(lto);  }//Can the 
person I send it to read it? 
              //If the recipient can't read it then it won't count 
later when checking for unsolicited 
 
              if (old_nonces.contains(nonce))//Stops reuse of nonces 
and won't allow tests to work 
              {   int z = old_nonces.indexOf(nonce); 
                     z = z + 1; 
                     System.out.println("I've sent nonce " + nonce + " 
out before in message " + old_nonces.elementAt(z)); 
                     
Sent_nonces.removeElement(old_nonces.elementAt(z)); //Get rid of 
message associated with it 
                     Sent_nonces.removeElement(nonce);//Get rid of 
previously sent out nonce 
                     if (sent_message_plain.contains(nonce)) 
                      { 
                          z = sent_message_plain.indexOf(nonce); 
          
sent_message_plain.removeElementAt(z + 1); 
                          sent_message_plain.removeElement(nonce); 
                         } 
               } 
 
            if (is_fresh)//Because nonces may come in bundles only get 
the fresh one for display 
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            {    the_fresh_nonce = nonce;     } 
            else 
              the_fresh_nonce = ""; 
 
              if (!from.equalsIgnoreCase("")) 
              { 
              String temporary2 = ""; 
              int h = 0; 
              while (h < comp.length()) 
              { 
                if 
(!comp.substring(h,h+1).equalsIgnoreCase("*"))//duplicate!  See below 
note: 
                    temporary2 = temporary2 + 
comp.substring(h,h+1);//duplicate, not needed but not sure top part 
will stay 
                    h++;//so not going to remove this yet!!! 
              } 
                //comp_I_sent.addElement(temporary2);//putting comp in 
old vector of stuff I already sent 
              } 
 
              //In case the person sends out a nonce both encrypted and 
plain I will remove them and announce failed test... 
     if (sent_message_plain.contains(nonce) && 
Sent_nonces.contains(nonce)) 
            { 
                System.out.println("Sender is sending the same nonce " 
+ nonce + " out both encrypted and plain."); 
                System.out.println("It may only be used to complete an 
incoming test."); 
                //remove the bad nonce from both respective vectors... 
                  //  int z = sent_message_plain.indexOf(nonce); 
                 //   sent_message_plain.removeElementAt(z + 1); 
                //    sent_message_plain.removeElement(nonce); 
                    int z =  Sent_nonces.indexOf(nonce); 
                    Sent_nonces.removeElementAt(z + 1); 
                    Sent_nonces.removeElement(nonce); 
  //now we put this comp in the bad test comp vector so we 
don't flag an unsolicited test 
                  //  bad_test_comp.addElement(comp); 
                    nonces_I_saw.addElement(nonce); 
            } 
 
            }//End of person being the sender//////////////////// 
 
            if (person.equals("receiver"))//////Start the receiver 
            { 
    if (nonces_I_saw.contains(nonce) && is_fresh) 
                { System.out.println("Warning: " + this.lname + " is 
seeing " + nonce + " again...but it's tagged with * (fresh) 
identifier!");   } 
 
    if (sent_plain &&  is_fresh) 
                 nonces_I_saw.addElement(nonce); 
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        // && 
!bad_test_comp.contains(comp) this was part of restrictions on 
unsolicited test... 
                if (!this.people_I_sent_stuff_to.contains(from) 
                    && !Sent_nonces.contains(nonce) && 
!messages_I_saw.contains(comp) 
                    && readable && (is_fresh | lwasfresh) && 
!nonces_I_saw.contains(nonce) 
                    && !sent_message_plain.contains(nonce) && 
!old_sent.contains(nonce) && !type_enc.equalsIgnoreCase("ASYM")) 
                { 
                System.out.print("Unsolicited test for " + this.lname); 
                System.out.println(" because of nonce " + nonce + " 
within test component < " + comp + " > "); 
                nonces_I_saw.addElement(nonce); 
                }//End of If for unsolicited test 
 
                else if (!this.people_I_sent_stuff_to.contains(from) && 
!bad_test_comp.contains(comp) 
                     && !messages_I_saw.contains(comp) && readable && 
is_fresh && (nonces_I_saw.contains(nonce) 
                      | sent_message_plain.contains(nonce) | 
Sent_nonces.contains(nonce))) 
                    { System.out.println("Sender may be attempting to 
initiate a test with an old nonce!"); } 
 
                else if (!this.people_I_sent_stuff_to.contains(from) && 
bad_test_comp.contains(comp) && 
                    !messages_I_saw.contains(comp) && readable && 
is_fresh) 
                { 
                  System.out.print("Receiver is receiving an invalid 
test component " + comp); 
                  System.out.println(" otherwise, it would be an 
unsolicited test with fresh term " + nonce); 
                } 
 
                if (this.people_I_sent_stuff_to.contains(from) && 
readable && is_fresh 
                    && !nonces_I_saw.contains(nonce) && 
!Sent_nonces.contains(nonce) 
                    && !sent_message_plain.contains(nonce) && 
!old_sent.contains(nonce) && !type_enc.equalsIgnoreCase("ASYM")) 
                { 
                  System.out.println("Pseudo-unsolicited test for "+ 
this.lname  + " because " + nonce 
                  + " is a newly received fresh nonce, but " + 
this.lname + " has sent items to " + from + " previously."); 
                  nonces_I_saw.addElement(nonce); 
                } 
                else if (this.people_I_sent_stuff_to.contains(from) && 
readable && is_fresh 
                    && !nonces_I_saw.contains(nonce) && 
Sent_nonces.contains(nonce)) 
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                { System.out.println("Sender may be attempting to 
intitiate a test with an old nonce!"); } 
 
 
                if (comp_I_sent.contains(comp) && !sent_plain) 
                { 
                    System.out.println("Evaluation of term " + nonce  + 
" indicates it is part of a component " + comp); 
                    System.out.println("which is being retransmitted. 
Therefore, test component " + comp + " is invalidated!"); 
                } 
 
   if (!comp_I_sent.contains(comp) && 
!old_nonces.contains(nonce)) 
                {//If it is fresh and not a duplicate test comp and not 
a proper subterm somewhere 
 
                  if (Sent_nonces.contains(nonce) && sent_plain) 
                  { 
                   int t = Sent_nonces.indexOf(nonce); 
                   t = t + 1; 
                   System.out.println("The encrypted/fresh nonce " + 
nonce + " has been received back in new component: " + comp); 
                   System.out.print("Outgoing test for " + this.lname + 
" because fresh term " + nonce + " was sent out earlier"); 
          System.out.println(" in < " + 
Sent_nonces.elementAt(t)+ " > "); 
                   old_nonces.addElement(nonce);//Now I've got it back 
I add nonce to old nonces vector 
                   
old_nonces.addElement(Sent_nonces.elementAt(t));//add associated 
message 
                  } 
                  if (sent_message_plain.contains(nonce) && !sent_plain 
&& 
                    !(bad_test_comp.contains(comp) && 
temp_holdings.contains(comp))&& !type_enc.equalsIgnoreCase("ASYM")) 
                  { 
                   int t = sent_message_plain.indexOf(nonce); 
                   t = t + 1; 
          System.out.println("The unencrypted/fresh 
nonce " + nonce + " has been received back in new component: " + comp); 
                   System.out.print("Incoming test for " + this.lname + 
" because fresh term " + nonce + " was sent out earlier"); 
          System.out.println(" in < " + 
sent_message_plain.elementAt(t) + " >"); 
                   old_nonces.addElement(nonce); 
                   
old_nonces.addElement(sent_message_plain.elementAt(t)); 
                  }//End of else for incoming 
                  if (Sent_nonces.contains(nonce) && !sent_plain  && 
!temp_holdings.contains(temp_comp)&& type_enc.equalsIgnoreCase("ASYM")) 
                  { 
                   int t = Sent_nonces.indexOf(nonce); 
                   t = t + 1; 
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                   System.out.println("The encrypted/fresh nonce " + 
nonce + " has been received back in new component: " + comp); 
                   System.out.print("Outgoing test for " + this.lname + 
" because fresh term " + nonce + " was sent out earlier"); 
          System.out.println(" in < " + 
Sent_nonces.elementAt(t)+ " > "); 
                   old_nonces.addElement(nonce);//Now I've got it back 
I add nonce to old nonces vector 
                   
old_nonces.addElement(Sent_nonces.elementAt(t));//add associated 
message 
                  }//End of else if for outgoing test 
                  else if (Sent_nonces.contains(nonce) && !sent_plain  
&& !temp_holdings.contains(temp_comp)) 
                  { 
                   int t = Sent_nonces.indexOf(nonce); 
                   t = t + 1; 
                   System.out.println("The encrypted/fresh nonce " + 
nonce + " has been received back in new component: " + comp); 
                   System.out.print("Outgoing/Incoming test for " + 
this.lname + " because fresh term " + nonce + " was sent out earlier"); 
          System.out.println(" in < " + 
Sent_nonces.elementAt(t)+ " > "); 
                   old_nonces.addElement(nonce);//Now I've got it back 
I add nonce to old nonces vector 
                   
old_nonces.addElement(Sent_nonces.elementAt(t));//add associated 
message 
                  }//End of else if for outgoing/incoming test 
 
                  if (temp_holdings.contains(temp_comp) && 
Sent_nonces.contains(nonce)) 
                  { 
                    System.out.println("The encrypted nonce "+ nonce + 
" has been received back, but in a duplicated transmission!"); 
                    System.out.println("The component " + comp + " was 
sent out identically by this sender."); 
                  }//End of retransmitted test 
                } 
            }//End of receiver part of addnonce function 
        }  //End of addnonce 
}//End of class Principal 
package protocolB; 
/** 
* Stephen Mancini and Robert Graham 
* AFIT/ENG 
* 23 Feb 2004 
 
The purpose of this class is as follows: 
Whenever an instance of an encrypted term is called, it happens here.  
This class will ascertain if 
a particular message is readable by sender, receiver, both or neither.  
This happens through recursive calls 
of getreadabletext() which is abstract and located several classes.  
The arguments are the same, however, based 
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on who can read it, the from and to strings are set to relevant 
setting.  For instance, if a sender can read it 
the from string is set to that value.  
Bottom line, based on key values, sender and receiver are set and 
getreadabletext function is called... 
*/ 
import java.util.*; 
 
public class Encryption extends Term 
{ 
    /** Creates a new instance of Encryption */ 
    public Encryption(Term t, Text k) { 
        this.term = t; 
        this.key = k; 
    } 
 
    public Term getTerm() { 
        return term; 
    } 
 
    public Text getKey() { 
        return key; 
    } 
 
 
    public void getComp(Vector bad_test_comp, Vector temp_holdings, 
String lfrom, String lto, boolean outside) 
    {//I only want to add those cases where t = {h}k so add encrypted 
wihtin encrypted components! 
 
      if (outside) 
      { 
        //This part is for whenever I might be bringing encryption from 
the min part but lets say it is in a sequence 
        //I still need to store that outside part and unfortunately 
this can't be done in PA because it call getComp 
        //of whatever object type it finds. So if outside is only 
encryption I can handle it in PA otherwise I go inside 
        //each object type's getComp and do whatever, in some cases 
this misght perform different functions 
        //so you may see repeating code ut chances are it is augmenting 
something unique to that inside instance 
        temp_holdings.addElement(this); 
        int max = this.toString().length(); 
        int Y = 0; 
        String hold = ""; 
        while (Y < max) 
        { 
          if (!this.toString().substring(Y, Y+1).equalsIgnoreCase("*")) 
            hold = hold + this.toString().substring(Y, Y+1); 
          Y++; 
        }//End of while loop through string 
        temp_holdings.addElement(hold); 
        String hold1 = hold + lfrom; 
        String hold2 = hold + lto; 
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        if (!temp_holdings.contains(hold1)) 
          if (!temp_holdings.contains(hold2)) 
                temp_holdings.addElement(hold1); 
      }//End of adding component based on the fact that it is outside 
but iin sequential order 
 
      if (this.getTerm() instanceof Sequence) 
      { 
        Sequence S = (Sequence) this.getTerm(); 
 
        for (ListIterator k = S.getTerms(); k.hasNext();) 
        { 
          Term l = (Term) k.next(); 
          if (l instanceof Encryption) 
          {//Not seeing the other term as encryption... 
             if (temp_holdings.contains(l.toString())) 
             bad_test_comp.addElement(l);//encryption within 
encryption...ruled out as test component 
 
   ///////////////Just removing any astrerisks 
             int max = l.toString().length(); 
             int Y = 0; 
             String hold = ""; 
             while (Y < max) 
             { 
               if (!l.toString().substring(Y, 
Y+1).equalsIgnoreCase("*")) 
               hold = hold + l.toString().substring(Y, Y+1); 
               Y++; 
             } 
             bad_test_comp.addElement(hold); 
             /////////////End of removing any asterisks 
 
             l.getComp(bad_test_comp,temp_holdings, lfrom, lto, 
false);//Make sure their isn't more encryption within 
           } 
          else 
          {//not encr5yption?  Then either more sequence or text!  Love 
abstract classes. 
           l.getComp(bad_test_comp, temp_holdings,lfrom, lto, false); 
          } 
        }//End of for loop through sequence iterator 
      }//End of if it's a sequence..if not sequence or encryption don't 
worry about it, it must be text only. 
 
      else if (this.getTerm() instanceof Encryption)//encryption within 
encryption 
        {//Any encrypted components wihthin encrypted components are 
ruled out as test components 
            if (temp_holdings.contains(this.getTerm().toString())) 
            bad_test_comp.addElement(this.getTerm()); 
        } 
    }//end of getComp() function 
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    public void getTextObj(Vector text_obj) 
    {//Let us get all the text objects that are within encryped terms 
      if (this.getTerm() instanceof Sequence) 
      { 
      Sequence s = (Sequence) this.getTerm(); 
      for (ListIterator i = s.getTerms(); i.hasNext(); ) 
      { 
        Term u = (Term) i.next(); 
        u.getTextObj(text_obj); 
      } 
      }//end of sequence 
      else if (this.getTerm() instanceof Text) 
        this.getTerm().getTextObj(text_obj); 
      else 
        this.getTerm().getTextObj(text_obj); 
    }//End of getTextObj() 
 
 
 
    public void getReadableTexts(String lfrom, String lto, Vector p, 
boolean readable, 
                                 boolean sent_plain, String comp, 
Vector list_of_components, 
                                 Vector old_sent, Vector bad_test_comp, 
Vector temp_holdings, Vector text_obj, String type_enc) 
        { 
      String temp = "";//If I can't open it I need to send a blank 
recipient 
      String temp_from = "";//I will set this based on whether or not 
component is new regardless of encryption 
      //Making assumotion that if comp is new that is where it 
originates. 
      String temp1 = this.key.toString().substring(1,2);//Set the first 
value for the key 
      String temp2 = "";//Maybe there are 2 values for the key... 
      type_enc = "ASYM";  //What type of encryption?  Needed for 
negating unsolicited tests 
 
      if (comp.equalsIgnoreCase("")) 
          comp = this.term.toString();//If it wasn't a sequence in 
P..A... then just use this term 
 
      if (this.key.toString().length()>2) 
      { 
        temp2 = this.key.toString().substring(2,3); 
  type_enc = "SYM"; 
      } 
 
      if (!list_of_components.contains(comp)) 
      { 
        temp_from = lfrom; 
        list_of_components.addElement(comp);//It's not getting added in 
PA so this is a quick fix... 
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        //besides, most concern in protocols comes inside the encrypted 
portions transmission. 
      } 
 
      if ((temp1.equalsIgnoreCase(lto) | temp2.equalsIgnoreCase(lto)) 
&& (temp1.equalsIgnoreCase(lfrom) | temp2.equalsIgnoreCase(lfrom))) 
         {//sender and recipient can read it 
         System.out.println("Encrypt term(s) < " + this.term + " > with 
key " + this.getKey().toString() + " is readable by both 
sender/receiver." ); 
         term.getReadableTexts(lfrom, lto, p, true, false, comp, 
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj, 
type_enc);// this.term.toString()); 
       } 
       else if (temp1.equalsIgnoreCase(lto) | 
temp2.equalsIgnoreCase(lto)) 
        {//Only the recipient can read it 
     System.out.println("Encrypted term(s) < " + this.term + " > with 
key " + this.getKey().toString() +" is readable by recipient only." ); 
        term.getReadableTexts(temp_from, lto, p, true, false,comp, 
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj, 
type_enc);//  this.term.toString()); 
        } 
      else if (temp1.equalsIgnoreCase(lfrom) | 
temp2.equalsIgnoreCase(lfrom)) 
        {//Only the sender can read it 
     System.out.println("Encrypted term(s) < " + this.term + " > with 
key " + this.getKey().toString() + " is readable by sender only."); 
        term.getReadableTexts(lfrom, temp, p, false, false,comp, 
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj, 
type_enc);//  this.term.toString()); 
        } 
      else 
       {//Neither can read it 
        System.out.println("Encrypted term(s) < " + this.term + " > 
with key " + this.getKey().toString() + " is readable by neither sender 
nor receiver."); 
        term.getReadableTexts(temp_from, temp, p, true, false, comp, 
list_of_components, old_sent, bad_test_comp, temp_holdings, text_obj, 
type_enc);//If the key doen't match either party 
       } 
    } 
 
    public String toString() { 
        return "{" + term.toString() + "}" + key.toString(); 
    } 
 
    protected Term term; 
    protected Text key; 
    protected boolean within = false; 
} 
 
package protocolB; 
 
/** 
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 * 
 * A Protocol is a sequence of {@link Message}s. 
 * Created on December 8, 2003, 4:57 PM 
 * @author  rgraham 
 */ 
import java.util.*; 
public class Protocol 
{ 
    /** Creates a new instance of a Protocol. */ 
    public Protocol() { 
        messages = new ArrayList(); 
    } 
 
    public void addMessage(Message m) { 
        messages.add(m); 
    } 
 
    public ListIterator listIterator() { 
        return messages.listIterator(); 
    } 
 
    public String toString() { 
        StringBuffer sb = new StringBuffer(); 
 
        for (ListIterator i = messages.listIterator(); i.hasNext(); ) 
            sb.append(((Message) i.next()).toString() + "\n"); 
 
        return sb.toString(); 
    } 
 
    protected List messages; 
 
    private static class Class1 { 
    } 
} 
 
package protocolB; 
 
/** 
 * A message is a term that one principal sends to another. 
 * 
 * @author  rgraham 
 */ 
public class Message { 
 
    /** Creates a new instance of Message */ 
    public Message(String from, String to, Term term) { 
        this.from = from; 
        this.to = to; 
        this.term = term; 
    } 
 
    public String getReceiver() { 
        return to; 
    } 
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    public String getSender() { 
        return from; 
    } 
 
    public Term getTerm() { 
        return term; 
    } 
 
    public void setReceiver(String to) { 
        this.to = to; 
    } 
 
    public void setSender(String from) { 
        this.from = from; 
    } 
 
    public void setTerm(Term term) { 
        this.term = term; 
    } 
 
    public String toString() { 
        return from + " -> " + to + " : " + term; 
    } 
 
    protected String from; 
    protected Term   term; 
    protected String to; 
} 
 
/* 
 * TermParser.java 
 * 
 * Created on December 8, 2003 
 */ 
 
package protocolB; 
 
import protocolB.Parser.*; 
import java.io.*; 
import java.text.ParseException; 
 
/** 
 * A TermParser tests the parser's ability to parse Terms.  The term to 
parse is 
 * specified on the command line (if it contains space, put it in 
quotes). 
 * 
 * @author  rgraham 
 */ 
public class TermParser 
{ 
    public static void main(String[] args) { 
        boolean err = false; 
        Term term = null; 
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        if (args.length == 0) { 
            System.out.println("Nothing to parse."); 
            System.exit(1); 
        } 
 
        System.out.println("Parsing term: '" + args[0] + "'"); 
        Parser p = new Parser(new StringReader(args[0])); 
        try { 
            term = p.parseTerm(); 
        } catch (ParseException e) { 
            System.out.println(e + " at offset " + e.getErrorOffset()); 
            err = true; 
        } catch (Exception e) { 
            System.out.println(e); 
            err = true; 
        } 
         
        if (!err) 
            System.out.println("Successful parse of '" + term + "'"); 
    } 
} 
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